“Linear diffusion domain” approach for modeling the kinetics of electrodeposition: a two-dimensional study

被引:0
|
作者
F. Di Biagio
M. Tomellini
机构
[1] Università degli Studi di Roma Tor Vergata,Dipartimento di Ingegneria Industriale
[2] Università degli Studi di Roma Tor Vergata,Dipartimento di Scienze e Tecnologie Chimiche
[3] Istituto di Struttura della Materia,undefined
关键词
Diffusional growth; Voronoi cell approach; Kolmogorov-Johnson-Mehl-Avrami theory; Model of potentiostatic transients;
D O I
暂无
中图分类号
学科分类号
摘要
A study is presented on diffusion-controlled growth of multi-nuclei systems in 2D space. The effect of correlation among diffusion fields on growth law of nuclei is investigated by means of numerical computations. The outputs of these simulations are employed to test the validity of the analytical approach based on the concept of linear diffusion domain. Both growth law of single nucleus and the total rate of film growth have been investigated by taking into account the finite-size effect of nuclei on the size probability density of the Voronoi cells. It is shown that the linear-diffusion-domain approach provides a satisfactory description of such an involved process. The application of the Voronoi cell approach is extended to a 3D system and makes it possible to determine the kinetics of nucleus growth as a function of cell size.
引用
收藏
页码:2667 / 2681
页数:14
相关论文
共 50 条
  • [31] THE DESIGN OF A TWO-DIMENSIONAL DOMAIN
    ZOCHOWSKI, A
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1986, 82 : 111 - 134
  • [32] Two-dimensional controlled source electromagnetic inversion algorithm based on a space domain forward modeling approach
    Chauhan, Iktesh
    Dehiya, Rahul
    [J]. GEOPHYSICAL PROSPECTING, 2024,
  • [33] DIFFUSION IN TWO-DIMENSIONAL MAPPINGS
    LICHTENBERG, AJ
    LIEBERMAN, MA
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1988, 33 (1-3) : 211 - 239
  • [34] DIFFUSION IN TWO-DIMENSIONAL CRYSTALS
    LYUKSYUTOV, IF
    POKROVSKII, VL
    [J]. JETP LETTERS, 1981, 33 (06) : 326 - 328
  • [35] Modeling two-dimensional diffusion-controlled wet chemical etching using a total concentration approach
    Rath, P
    Chai, JC
    Zheng, H
    Lam, YC
    Murukeshan, VM
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (7-8) : 1480 - 1488
  • [36] Numerical Modeling of Two-Dimensional Flow of a Nonhomogeneous Fluid in a Confined Domain
    S. F. Garanin
    E. M. Kravets
    O. N. Pronina
    A. L. Stadnik
    [J]. Fluid Dynamics, 2018, 53 : 127 - 135
  • [37] On Discretization of a Two-Dimensional Laplace Operator in a Smooth Two-Dimensional Domain
    Algazin, S. D.
    [J]. NUMERICAL ANALYSIS AND APPLICATIONS, 2021, 14 (03) : 220 - 224
  • [38] On Discretization of a Two-Dimensional Laplace Operator in a Smooth Two-Dimensional Domain
    S. D. Algazin
    [J]. Numerical Analysis and Applications, 2021, 14 : 220 - 224
  • [39] Two-dimensional diffusion characterization of boron in silicon using Reverse Modeling
    Shauly, EN
    Ghez, R
    Komem, Y
    [J]. SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2001, 2001, : 384 - 387
  • [40] Numerical Modeling of Two-Dimensional Flow of a Nonhomogeneous Fluid in a Confined Domain
    Garanin, S. F.
    Kravets, E. M.
    Pronina, O. N.
    Stadnik, A. L.
    [J]. FLUID DYNAMICS, 2018, 53 (01) : 127 - 135