Global series for height 1 multiple zeta functions

被引:0
|
作者
Paul Thomas Young
机构
[1] College of Charleston,Department of Mathematics
来源
关键词
Multiple zeta functions; Ramanujan summation; Stieltjes constants; Multiple harmonic star sums; 11M32; 11M06; 40G99; 11B68;
D O I
暂无
中图分类号
学科分类号
摘要
We use everywhere-convergent series for the height 1 multiple zeta functions ζ(s,1,…,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s,1,\ldots ,1)$$\end{document} to determine the singular parts of their Laurent series at each of their poles, and give an expression for each first “Stieltjes constant” (i.e., the linear Laurent coefficient) as series involving the Bernoulli numbers of the second kind, generalizing the classical Mascheroni series for Euler’s constant γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}. The first Stieltjes constants at s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document} and at s=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=0$$\end{document} are then interpreted in terms of the Ramanujan summation of multiple harmonic star sums ζ⋆(1,…,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta ^\star (1,\ldots ,1)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Global series for height 1 multiple zeta functions
    Young, Paul Thomas
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (04)
  • [2] GLOBAL SERIES FOR ZETA FUNCTIONS
    Wakhare, Tanay
    FIBONACCI QUARTERLY, 2019, 57 (05): : 179 - 180
  • [3] Series involving the Zeta function and multiple Gamma functions
    Choi, JS
    Cho, YJ
    Srivastava, HM
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) : 509 - 537
  • [4] Rational series for multiple zeta and log gamma functions
    Young, Paul Thomas
    JOURNAL OF NUMBER THEORY, 2013, 133 (12) : 3995 - 4009
  • [5] MOTIVIC HEIGHT ZETA FUNCTIONS
    Chambert-Loir, Antoine
    Loeser, Francois
    AMERICAN JOURNAL OF MATHEMATICS, 2016, 138 (01) : 1 - 59
  • [6] On the dynamical height zeta functions
    Hsia, LC
    JOURNAL OF NUMBER THEORY, 1997, 63 (01) : 146 - 169
  • [7] Multiple Dirichlet series and moments of zeta and L-functions
    Diaconu, A
    Goldfeld, D
    Hoffstein, J
    COMPOSITIO MATHEMATICA, 2003, 139 (03) : 297 - 360
  • [8] On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions
    Nakasuji, Maki
    Phuksuwan, Ouamporn
    Yamasaki, Yoshinori
    ADVANCES IN MATHEMATICS, 2018, 333 : 570 - 619
  • [9] Height zeta functions of twisted products
    Strauch, M
    Tschinkel, Y
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (2-3) : 273 - 282
  • [10] Multiple zeta functions and polylogarithms over global function fields
    Basak, Debmalya
    Degre-Pelletier, Nicolas
    Lalin, Matilde N.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2020, 32 (02): : 403 - 438