Entanglement entropy in three dimensional gravity

被引:0
|
作者
Henry Maxfield
机构
[1] Durham University,Centre for Particle Theory & Department of Mathematical Sciences
关键词
AdS-CFT Correspondence; Classical Theories of Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotient of AdS3, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the ℝℙ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathbb{R}}{\mathrm{\mathbb{P}}}^2 $$\end{document} geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.
引用
收藏
相关论文
共 50 条
  • [31] Holographic entanglement entropy for general higher derivative gravity
    Xi Dong
    [J]. Journal of High Energy Physics, 2014
  • [32] Finite entanglement entropy and spectral dimension in quantum gravity
    Michele Arzano
    Gianluca Calcagni
    [J]. The European Physical Journal C, 2017, 77
  • [33] Renormalized holographic entanglement entropy for quadratic curvature gravity
    Anastasiou, Giorgos
    Araya, Ignacio J.
    Moreno, Javier
    Olea, Rodrigo
    Rivera-Betancour, David
    [J]. PHYSICAL REVIEW D, 2021, 104 (08)
  • [34] Finite entanglement entropy in asymptotically safe quantum gravity
    Pagani, Carlo
    Reuter, Martin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [35] Partition functions of three-dimensional quantum gravity and the black hole entropy
    Bytsenko, A. A.
    Guimaraes, M. E. X.
    [J]. 60 YEARS OF THE CASIMIR EFFECT, 2009, 161
  • [36] Entanglement entropy of two dimensional systems and holography
    Michalogiorgakis, Georgios
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (12):
  • [37] Entanglement Entropy of One-Dimensional Gases
    Calabrese, Pasquale
    Mintchev, Mihail
    Vicari, Ettore
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (02)
  • [38] A note on the entanglement entropy of primary fermion fields in JT gravity
    郭长仲
    甘文聪
    舒富文
    [J]. Chinese Physics C, 2023, (08) : 177 - 187
  • [39] Holographic entanglement entropy for 4D conformal gravity
    Alishahiha, Mohsen
    Astaneh, Amin Faraji
    Mozaffar, M. Reza Mohammadi
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02):
  • [40] On entanglement entropy functionals in higher-derivative gravity theories
    Arpan Bhattacharyya
    Menika Sharma
    [J]. Journal of High Energy Physics, 2014