Cubic spline quadrature rule to calculate supersingular integral on interval

被引:0
|
作者
Jin Li
Yu Sang
Xiaolei Zhang
机构
[1] Shandong Jianzhu University,School of Science
[2] North China University of Science and Technology,College of Science
来源
关键词
Cubic spline quadrature rule; Supersingular integral; Superconvergence phenomenon; 65G30; 42A50;
D O I
暂无
中图分类号
学科分类号
摘要
The cubic spline quadrature rule for the calculation of supersingular integral (also called “third order hypersingular integral”) is discussed. The superconvergence phenomenon exists at the midpoint of subinterval and the superconvergence point is the zero point of the special function. When τ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =0$$\end{document}, the order of convergence at the superconvergence point is higher than that at the non-superconvergence point. The superconvergence theory of the cubic spline quadrature function for the supersingular integral can be proved by hermite quadrature formula. Finally, examples are given to illustrate the effectiveness of the proposed method.
引用
收藏
相关论文
共 50 条
  • [21] Construction of optimally conditioned cubic spline wavelets on the interval
    Cerna, Dana
    Finek, Vaclav
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (02) : 219 - 252
  • [22] Construction of optimally conditioned cubic spline wavelets on the interval
    Dana Černá
    Václav Finěk
    Advances in Computational Mathematics, 2011, 34 : 219 - 252
  • [23] Cubic spline wavelets with short support adapted to the interval
    Cerna, Dana
    Finek, Vaclav
    39TH INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE13), 2013, 1570 : 221 - 226
  • [24] Gaussian quadrature rule for arbitrary weight function and interval
    Fukuda, H
    Katuya, M
    Alt, EO
    Matveenko, AV
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 167 (02) : 143 - 150
  • [25] A GAUSSIAN QUADRATURE RULE FOR OSCILLATORY INTEGRALS ON A BOUNDED INTERVAL
    Asheim, Andreas
    Deano, Alfredo
    Huybrechs, Daan
    Wang, Haiyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (03) : 883 - 901
  • [26] ON SPLINE APPROXIMATION FOR SINGULAR INTEGRAL-EQUATIONS ON AN INTERVAL
    ELSCHNER, J
    MATHEMATISCHE NACHRICHTEN, 1988, 139 : 309 - 319
  • [27] A new quadrature rule derived from spline interpolation with error analysis
    Taghvafard, Hadi
    World Academy of Science, Engineering and Technology, 2011, 55 : 972 - 977
  • [28] A new quadrature rule derived from spline interpolation with error analysis
    Taghvafard, Hadi
    World Academy of Science, Engineering and Technology, 2011, 79 : 972 - 977
  • [29] INTERPOLATORY RATIONAL CUBIC SPLINE WITH BIASED, POINT AND INTERVAL TENSION
    SARFRAZ, M
    COMPUTERS & GRAPHICS, 1992, 16 (04) : 427 - 430
  • [30] Two cubic spline methods for solving Fredholm integral equations'
    Bellour, A.
    Sbibih, D.
    Zidna, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 1 - 11