Cubic spline quadrature rule to calculate supersingular integral on interval

被引:0
|
作者
Jin Li
Yu Sang
Xiaolei Zhang
机构
[1] Shandong Jianzhu University,School of Science
[2] North China University of Science and Technology,College of Science
来源
关键词
Cubic spline quadrature rule; Supersingular integral; Superconvergence phenomenon; 65G30; 42A50;
D O I
暂无
中图分类号
学科分类号
摘要
The cubic spline quadrature rule for the calculation of supersingular integral (also called “third order hypersingular integral”) is discussed. The superconvergence phenomenon exists at the midpoint of subinterval and the superconvergence point is the zero point of the special function. When τ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =0$$\end{document}, the order of convergence at the superconvergence point is higher than that at the non-superconvergence point. The superconvergence theory of the cubic spline quadrature function for the supersingular integral can be proved by hermite quadrature formula. Finally, examples are given to illustrate the effectiveness of the proposed method.
引用
收藏
相关论文
共 50 条
  • [11] Cubic Spline Collocation for Volterra Integral Equations
    Peeter Oja
    Darja Saveljeva
    Computing, 2002, 69 : 319 - 337
  • [12] Numerical Integral Based on Cubic Spline Interpolation
    Gao, Shang
    Zhang, Shaobiao
    PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND INDUSTRIAL ENGINEERING, VOLS I AND II, 2010, : 708 - 711
  • [13] Differentiation and numerical integral of the cubic spline interpolation
    Gao S.
    Zhang Z.
    Cao C.
    Journal of Computers, 2011, 6 (10) : 2037 - 2044
  • [14] Cubic spline collocation for Volterra integral equations
    Oja, P
    Saveljeva, D
    COMPUTING, 2002, 69 (04) : 319 - 337
  • [15] Gauss-Laguerre interval quadrature rule
    Milovanovic, GV
    Cvetkovic, AS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (02) : 433 - 446
  • [16] Gauss-Hermite interval quadrature rule
    Milovanovic, Gradimir V.
    Cvetkovic, Aleksandar S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (04) : 544 - 555
  • [17] Gaussian interval quadrature rule for exponential weights
    Cvetkovic, Aleksandar S.
    Milovanovic, Gradimir V.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9332 - 9341
  • [18] Gauss-Hermite interval quadrature rule
    Department of Mathematics, Faculty of Electronic Engineering, University of Niš, P.O. Box 73, 18000 Niš, Rs
    Comput Math Appl, 4 (544-555):
  • [19] One point quadrature rule with cardinal B-spline
    Udovicic, Zlatko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) : 432 - 438
  • [20] A CUBIC-SPLINE TECHNIQUE TO CALCULATE NODAL DARCIAN VELOCITIES IN AQUIFERS
    ZHANG, ZH
    XUE, YQ
    WU, JC
    WATER RESOURCES RESEARCH, 1994, 30 (04) : 975 - 981