Cubic spline quadrature rule to calculate supersingular integral on interval

被引:0
|
作者
Jin Li
Yu Sang
Xiaolei Zhang
机构
[1] Shandong Jianzhu University,School of Science
[2] North China University of Science and Technology,College of Science
来源
关键词
Cubic spline quadrature rule; Supersingular integral; Superconvergence phenomenon; 65G30; 42A50;
D O I
暂无
中图分类号
学科分类号
摘要
The cubic spline quadrature rule for the calculation of supersingular integral (also called “third order hypersingular integral”) is discussed. The superconvergence phenomenon exists at the midpoint of subinterval and the superconvergence point is the zero point of the special function. When τ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =0$$\end{document}, the order of convergence at the superconvergence point is higher than that at the non-superconvergence point. The superconvergence theory of the cubic spline quadrature function for the supersingular integral can be proved by hermite quadrature formula. Finally, examples are given to illustrate the effectiveness of the proposed method.
引用
收藏
相关论文
共 50 条
  • [1] Cubic spline quadrature rule to calculate supersingular integral on interval
    Li, Jin
    Sang, Yu
    Zhang, Xiaolei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (07):
  • [2] The Cubic Spline Rule for the Hadamard Finite-Part Integral on an Interval
    Gu, Gendai
    An, Sheng
    Zhao, Meiling
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (03) : 906 - 922
  • [3] The trapezoidal rule for computing supersingular integral on interval
    Wang, Jizhong
    Li, Jin
    Zhou, Yueting
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1616 - 1624
  • [4] A QUADRATURE FORMULA FOR THE FOURIER INTEGRAL BASED ON THE USE OF A CUBIC SPLINE
    AVDEYENKO, VA
    MALYUKOV, AA
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (03): : 101 - 103
  • [5] The extrapolation methods based on Simpson's rule for computing supersingular integral on interval
    Li, Jin
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 : 204 - 214
  • [6] DIRECT CUBIC SPLINE WITH APPLICATION TO QUADRATURE
    ANWAR, MN
    ELTARAZI, MN
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1989, 5 (04): : 237 - 246
  • [7] Trapezoidal Rule for Computing Supersingular Integral on a Circle
    Li, Jin
    Rui, Hongxing
    Yu, Dehao
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (02) : 740 - 760
  • [8] Trapezoidal Rule for Computing Supersingular Integral on a Circle
    Jin Li
    Hongxing Rui
    Dehao Yu
    Journal of Scientific Computing, 2016, 66 : 740 - 760
  • [10] Composite Simpson's Rule for Computing Supersingular Integral on Circle
    Li, Jin
    Ru, Hongxing
    Yu, Dehao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 97 (06): : 463 - 481