On Convolution of Harmonic Mappings

被引:0
|
作者
Subzar Beig
机构
[1] University of Delhi,Department of Mathematics
来源
关键词
Convex mappings; Harmonic mappings; Convolution; Directional convexity; 30C45; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
For j=1,2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,$$\end{document} let the sense-preserving locally univalent harmonic mappings Fj=Hj+Gj¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_j={\mathcal {H}}_j+\overline{{\mathcal {G}}_j}$$\end{document} on D:=z∈C:|z|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}:=\left\{ z\in {\mathbb {C}}: |z|<1\right\} $$\end{document} be such that Fj(z¯)¯=Fj(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {F}}_j({\overline{z}})}={\mathcal {F}}_j(z)$$\end{document} and the mappings z(Hj+Gj)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z({\mathcal {H}}_j+{\mathcal {G}}_j)'$$\end{document} are either odd starlike or starlike of order 1/2. It is shown that the convolution F1∗F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1*{\mathcal {F}}_2$$\end{document} of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1$$\end{document} and F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_2$$\end{document} is directional convex univalent mapping if it is locally univalent sense-preserving. Also, some examples are given where F1∗F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1*{\mathcal {F}}_2$$\end{document} is locally univalent sense-preserving.
引用
下载
收藏
相关论文
共 50 条