On Convolution of Harmonic Mappings

被引:0
|
作者
Subzar Beig
机构
[1] University of Delhi,Department of Mathematics
来源
关键词
Convex mappings; Harmonic mappings; Convolution; Directional convexity; 30C45; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
For j=1,2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,$$\end{document} let the sense-preserving locally univalent harmonic mappings Fj=Hj+Gj¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_j={\mathcal {H}}_j+\overline{{\mathcal {G}}_j}$$\end{document} on D:=z∈C:|z|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}:=\left\{ z\in {\mathbb {C}}: |z|<1\right\} $$\end{document} be such that Fj(z¯)¯=Fj(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {F}}_j({\overline{z}})}={\mathcal {F}}_j(z)$$\end{document} and the mappings z(Hj+Gj)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z({\mathcal {H}}_j+{\mathcal {G}}_j)'$$\end{document} are either odd starlike or starlike of order 1/2. It is shown that the convolution F1∗F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1*{\mathcal {F}}_2$$\end{document} of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1$$\end{document} and F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_2$$\end{document} is directional convex univalent mapping if it is locally univalent sense-preserving. Also, some examples are given where F1∗F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1*{\mathcal {F}}_2$$\end{document} is locally univalent sense-preserving.
引用
收藏
相关论文
共 50 条
  • [21] A convolution property of univalent harmonic right half-plane mappings
    Ali, Md Firoz
    Allu, Vasudevarao
    Ghosh, Nirupam
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (04): : 729 - 736
  • [22] Convolution Properties of Some Harmonic Mappings in the Right Half-Plane
    Kumar, Raj
    Dorff, Michael
    Gupta, Sushma
    Singh, Sukhjit
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (01) : 439 - 455
  • [23] Convolution Properties of Some Slanted Half-Plane Harmonic Mappings
    Sharma, Poonam
    Porwal, Saurabh
    Mishra, Omendra
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (01) : 131 - 142
  • [24] Convolution Properties of Some Harmonic Mappings in the Right Half-Plane
    Raj Kumar
    Michael Dorff
    Sushma Gupta
    Sukhjit Singh
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 439 - 455
  • [25] Convolution properties of the harmonic Koebe function and its connection with 2-starlike mappings
    Nagpal, Sumit
    Ravichandran, V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (02) : 191 - 210
  • [26] HARMONIC MAPPINGS
    FULLER, FB
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1954, 40 (10) : 987 - 991
  • [27] On the elliptic harmonic mappings and sense-preserving harmonic mappings
    Liu, Ming-Sheng
    Xu, Hao
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (03): : 631 - 647
  • [28] On convolution, convex, and starlike mappings
    Chuaqui, Martin
    Osgood, Brad
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (02): : 431 - 440
  • [29] Properties of the mappings that are close to the harmonic mappings
    A. P. Kopylov
    Siberian Mathematical Journal, 1998, 39 : 765 - 780
  • [30] Compositions of harmonic mappings and biharmonic mappings
    Chen, Shaolin
    Ponnusamy, Saminathan
    Wang, Xiantao
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (04) : 693 - 704