On Convolution of Harmonic Mappings

被引:0
|
作者
Subzar Beig
机构
[1] University of Delhi,Department of Mathematics
来源
关键词
Convex mappings; Harmonic mappings; Convolution; Directional convexity; 30C45; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
For j=1,2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,$$\end{document} let the sense-preserving locally univalent harmonic mappings Fj=Hj+Gj¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_j={\mathcal {H}}_j+\overline{{\mathcal {G}}_j}$$\end{document} on D:=z∈C:|z|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}:=\left\{ z\in {\mathbb {C}}: |z|<1\right\} $$\end{document} be such that Fj(z¯)¯=Fj(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {F}}_j({\overline{z}})}={\mathcal {F}}_j(z)$$\end{document} and the mappings z(Hj+Gj)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z({\mathcal {H}}_j+{\mathcal {G}}_j)'$$\end{document} are either odd starlike or starlike of order 1/2. It is shown that the convolution F1∗F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1*{\mathcal {F}}_2$$\end{document} of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1$$\end{document} and F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_2$$\end{document} is directional convex univalent mapping if it is locally univalent sense-preserving. Also, some examples are given where F1∗F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_1*{\mathcal {F}}_2$$\end{document} is locally univalent sense-preserving.
引用
收藏
相关论文
共 50 条
  • [1] On Convolution of Harmonic Mappings
    Beig, Subzar
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (04)
  • [2] NOTE ON THE CONVOLUTION OF HARMONIC MAPPINGS
    Li, Liulan
    Ponnusamy, Saminathan
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (03) : 421 - 431
  • [3] On Convolution and Convex Combination of Harmonic Mappings
    El-Faqeer, Ahmad Sulaiman Ahmad
    Ng, Zhen Chuan
    Supramaniam, Shamani
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [4] Subclasses of Harmonic Mappings Defined by Convolution
    Joshi, Santosh B.
    Shelake, Girish D.
    [J]. JOURNAL OF COMPLEX ANALYSIS, 2013,
  • [5] Convolution and Convex Combination of Harmonic Mappings
    Subzar Beig
    V. Ravichandran
    [J]. Bulletin of the Iranian Mathematical Society, 2019, 45 : 1467 - 1486
  • [6] Subclasses of harmonic mappings defined by convolution
    Ali, Rosihan M.
    Stephen, B. Adolf
    Subramanian, K. G.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1243 - 1247
  • [7] Convolution and Convex Combination of Harmonic Mappings
    Beig, Subzar
    Ravichandran, V.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (05) : 1467 - 1486
  • [8] On Construction and Convolution Properties of Univalent Harmonic Mappings
    Kumar, Raj
    Verma, Sarika
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1539 - 1552
  • [9] Subclasses of Multivalent Harmonic Mappings Defined by Convolution
    Subramanian, K. G.
    Stephen, B. Adolf
    Lee, S. K.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (03) : 717 - 726
  • [10] On Construction and Convolution Properties of Univalent Harmonic Mappings
    Raj Kumar
    Sarika Verma
    [J]. Bulletin of the Iranian Mathematical Society, 2022, 48 : 1539 - 1552