The Fefferman–Stein Type Inequalities for Strong Fractional Maximal Operators
被引:0
|
作者:
Hiroki Saito
论文数: 0引用数: 0
h-index: 0
机构:Nihon University,College of Science and Technology
Hiroki Saito
Hitoshi Tanaka
论文数: 0引用数: 0
h-index: 0
机构:Nihon University,College of Science and Technology
Hitoshi Tanaka
机构:
[1] Nihon University,College of Science and Technology
[2] National University Corporation Tsukuba University of Technology,Research and Support Center on Higher Education for the Hearing and Visually Impaired
We prove the Fefferman–Stein type inequalities for strong fractional maximal operators by additional compositions of certain maximal operators instead of using the strong Muckenhoupt weight. With an arbitrary weight, in R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {R}}}^2$$\end{document}, we establish an endpoint estimate and in Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {R}}}^n$$\end{document}, n≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\ge 2$$\end{document}, we give a weak (p, p) type estimate for p>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p>1$$\end{document}. We also investigate the case p=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p=1$$\end{document} in higher dimensions.
机构:
Univ Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, F-91405 Orsay, France
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R ChinaUniv Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, F-91405 Orsay, France
机构:
Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Peoples R China
Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R ChinaShandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Peoples R China
Liu, Feng
Xue, Qingying
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing, Peoples R ChinaShandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Peoples R China
机构:
Consejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
UNL, Dept Matemat FIQ, Santa Fe, ArgentinaConsejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
Berra, Fabio
Pradolini, Gladis
论文数: 0引用数: 0
h-index: 0
机构:
Consejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
UNL, Dept Matemat FIQ, Santa Fe, ArgentinaConsejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
Pradolini, Gladis
Recchi, Jorgelina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Sur UNS, Dept Matemat, Inst Matemat INMABB, CONICET, Bahia Blanca, ArgentinaConsejo Nacl Invest Cient & Tecn, Santa Fe, Argentina