The Fefferman–Stein Type Inequalities for Strong Fractional Maximal Operators

被引:0
|
作者
Hiroki Saito
Hitoshi Tanaka
机构
[1] Nihon University,College of Science and Technology
[2] National University Corporation Tsukuba University of Technology,Research and Support Center on Higher Education for the Hearing and Visually Impaired
来源
Results in Mathematics | 2019年 / 74卷
关键词
Fefferman–Stein type inequality; strong maximal operator; strong fractional maximal operator; Primary 42B25; Secondary 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the Fefferman–Stein type inequalities for strong fractional maximal operators by additional compositions of certain maximal operators instead of using the strong Muckenhoupt weight. With an arbitrary weight, in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^2$$\end{document}, we establish an endpoint estimate and in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, we give a weak (p, p) type estimate for p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}. We also investigate the case p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1$$\end{document} in higher dimensions.
引用
收藏
相关论文
共 50 条
  • [1] The Fefferman-Stein Type Inequalities for Strong Fractional Maximal Operators
    Saito, Hiroki
    Tanaka, Hitoshi
    RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [2] The Fefferman-Stein Type Inequalities for Strong and Directional Maximal Operators in the Plane
    Saito, Hiroki
    Tanaka, Hitoshi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (01): : 191 - 200
  • [3] THE FEFFERMAN-STEIN TYPE INEQUALITIES FOR THE MULTILINEAR STRONG MAXIMAL FUNCTIONS
    Zhang, Juan
    Saito, Hiroki
    Xue, Qingying
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 539 - 552
  • [4] Fefferman–Stein inequalities for the dyadic-like maximal operators
    Mateusz Rapicki
    Archiv der Mathematik, 2019, 113 : 81 - 93
  • [5] Fefferman-Stein inequalities for the dyadic-like maximal operators
    Rapicki, Mateusz
    ARCHIV DER MATHEMATIK, 2019, 113 (01) : 81 - 93
  • [6] EXTENSIONS OF FEFFERMAN-STEIN MAXIMAL INEQUALITIES
    Gao, Wenhua
    Hu, Guoen
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01): : 197 - 210
  • [7] MIXED INEQUALITIES OF FEFFERMAN-STEIN TYPE FOR SINGULAR INTEGRAL OPERATORS
    Berra F.
    Carena M.
    Pradolini G.
    Journal of Mathematical Sciences, 2022, 266 (3) : 461 - 475
  • [8] A characterization of the weighted weak type Coifman–Fefferman and Fefferman–Stein inequalities
    Andrei K. Lerner
    Mathematische Annalen, 2020, 378 : 425 - 446
  • [9] The endpoint Fefferman-Stein inequality for the strong maximal function
    Luque, Teresa
    Parissis, Ioannis
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 199 - 212
  • [10] Weak type inequalities for ergodic strong maximal operators
    Paul Hagelstein
    Alexander Stokolos
    Acta Scientiarum Mathematicarum, 2010, 76 (3-4): : 427 - 441