On the rationality of certain Fano threefolds

被引:0
|
作者
Ciro Ciliberto
机构
[1] Università di Roma Tor Vergata,Dipartimento di Matematica
来源
manuscripta mathematica | 2024年 / 174卷
关键词
Primary: 14E08; 14E05; Secondary: 14J30; 14J45; 14M20; 14N05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the rationality problem for Fano threefolds X⊂Pp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset {\mathbb P}^{p+1}$$\end{document} of genus p, that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as p⩾8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geqslant 8$$\end{document} (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus p⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geqslant 7$$\end{document} containing a plane is rational; (3) any Fano threefold of genus p⩾17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geqslant 17$$\end{document} is rational; (4) a Fano threefold of genus p⩾12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geqslant 12$$\end{document} containing an ordinary line ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} in its smooth locus is rational.
引用
收藏
页码:203 / 219
页数:16
相关论文
共 50 条
  • [41] Simple Helices on Fano Threefolds
    Polishchuk, A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (03): : 520 - 526
  • [42] FANO THREEFOLDS OF GENUS 6
    Logachev, Dmitry
    ASIAN JOURNAL OF MATHEMATICS, 2012, 16 (03) : 515 - 559
  • [43] Fano threefolds of large Fano index and large degree
    Prokhorov, Yu. G.
    SBORNIK MATHEMATICS, 2013, 204 (03) : 347 - 382
  • [44] On some Fano-Enriques threefolds
    Karzhemanov, Ilya
    ADVANCES IN GEOMETRY, 2011, 11 (01) : 117 - 129
  • [45] Fano threefolds with infinite automorphism groups
    Przyjalkowski, V. V.
    Cheltsov, I. A.
    Shramov, K. A.
    IZVESTIYA MATHEMATICS, 2019, 83 (04) : 860 - 907
  • [46] From cracked polytopes to Fano threefolds
    Thomas Prince
    manuscripta mathematica, 2021, 164 : 267 - 320
  • [47] Fano Threefolds With Affine Canonical Extensions
    Andreas Höring
    Thomas Peternell
    The Journal of Geometric Analysis, 2024, 34
  • [48] Poisson cohomology of two Fano threefolds
    Mayanskiy, Evgeny
    JOURNAL OF ALGEBRA, 2015, 424 : 21 - 45
  • [49] Singular Fano threefolds of genus 12
    Prokhorov, Yu. G.
    SBORNIK MATHEMATICS, 2016, 207 (07) : 983 - 1009
  • [50] Prime Fano threefolds and integrable systems
    Iliev, Atanas
    Manivel, Laurent
    MATHEMATISCHE ANNALEN, 2007, 339 (04) : 937 - 955