On the rationality of certain Fano threefolds

被引:0
|
作者
Ciro Ciliberto
机构
[1] Università di Roma Tor Vergata,Dipartimento di Matematica
来源
manuscripta mathematica | 2024年 / 174卷
关键词
Primary: 14E08; 14E05; Secondary: 14J30; 14J45; 14M20; 14N05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the rationality problem for Fano threefolds X⊂Pp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset {\mathbb P}^{p+1}$$\end{document} of genus p, that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as p⩾8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geqslant 8$$\end{document} (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus p⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geqslant 7$$\end{document} containing a plane is rational; (3) any Fano threefold of genus p⩾17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geqslant 17$$\end{document} is rational; (4) a Fano threefold of genus p⩾12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geqslant 12$$\end{document} containing an ordinary line ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} in its smooth locus is rational.
引用
收藏
页码:203 / 219
页数:16
相关论文
共 50 条
  • [31] Fano threefolds in positive characteristic
    Megyesi, G
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (02) : 207 - 218
  • [32] Quintic threefolds and Fano elevenfolds
    Segal, Ed
    Thomas, Richard
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 743 : 245 - 259
  • [33] TWISTOR SPACES AND FANO THREEFOLDS
    OXBURY, WM
    QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (179): : 343 - 366
  • [34] Fano threefolds in positive characteristic
    ShepherdBarron, NI
    COMPOSITIO MATHEMATICA, 1997, 105 (03) : 237 - 265
  • [35] On holomorphic distributions on Fano threefolds
    Cavalcante, Alana
    Correa, Mauricio
    Marchesi, Simone
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (06)
  • [36] Instanton bundles on Fano threefolds
    Kuznetsov, Alexander
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (04): : 1198 - 1231
  • [37] NOTES ON THE ARITHMETIC OF FANO THREEFOLDS
    MANIN, YI
    COMPOSITIO MATHEMATICA, 1993, 85 (01) : 37 - 55
  • [38] Terminal Fano threefolds and their smoothings
    Priska Jahnke
    Ivo Radloff
    Mathematische Zeitschrift, 2011, 269 : 1129 - 1136
  • [39] Terminal Fano threefolds and their smoothings
    Jahnke, Priska
    Radloff, Ivo
    MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) : 1129 - 1136
  • [40] ℚ-Fano threefolds of index 7
    Yuri G. Prokhorov
    Proceedings of the Steklov Institute of Mathematics, 2016, 294 : 139 - 153