A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory

被引:0
|
作者
Lenart, Cristian [1 ]
Naito, Satoshi [2 ]
Sagaki, Daisuke [3 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[2] Tokyo Inst Technol, Dept Math, 2-12-1 Oh Okayama,Meguro Ku, Tokyo 1528551, Japan
[3] Univ Tsukuba, Fac Pure & Appl Sci, Dept Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2024年 / 30卷 / 03期
关键词
Semi-infinite flag manifold; Quantum K-theory; Chevalley formula; Quantum Bruhat graph; Quantum LS paths; Quantum alcove model; Quantum Grothendieck polynomials; MODEL;
D O I
10.1007/s00029-024-00924-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a Chevalley formula for an arbitrary weight for the torus-equivariant K-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum K-theory QK(T)(G/B) of an (ordinary) flag manifold G/B; this has been a longstanding conjecture about the multiplicative structure of QK(T)(G/B). In type A(n-1), we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum K-theory QK(SLn/B); we also obtain very explicit information about the coefficients in the respective Chevalley formula.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] EQUIVARIANT K-THEORY OF SEMI-INFINITE FLAG MANIFOLDS AND THE PIERI-CHEVALLEY FORMULA
    Kato, Syu
    Naito, Satoshi
    Sagaki, Daisuke
    [J]. DUKE MATHEMATICAL JOURNAL, 2020, 169 (13) : 2421 - 2500
  • [2] Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds
    Naito, Satoshi
    Orr, Daniel
    Sagaki, Daisuke
    [J]. ADVANCES IN MATHEMATICS, 2021, 387
  • [3] SEMI-INFINITE SCHUBERT VARIETIES AND QUANTUM K-THEORY OF FLAG MANIFOLDS
    Braverman, Alexander
    Finkelberg, Michael
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (04) : 1147 - 1168
  • [4] Equivariant K-theory of the semi-infinite flag manifold as a nil-DAHA module
    Orr, Daniel
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (03):
  • [5] Equivariant K-theory of the semi-infinite flag manifold as a nil-DAHA module
    Daniel Orr
    [J]. Selecta Mathematica, 2023, 29
  • [6] Inverse K-Chevalley formulas for semi-infinite flag manifolds, II: Arbitrary weights in ADE type
    Lenart, Cristian
    Naito, Satoshi
    Orr, Daniel
    Sagaki, Daisuke
    [J]. ADVANCES IN MATHEMATICS, 2023, 423
  • [7] Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type
    Kouno, Takafumi
    Naito, Satoshi
    Orr, Daniel
    Sagaki, Daisuke
    [J]. FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [8] A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties
    Buch, Anders S.
    Chaput, Pierre-Emmanuel
    Mihalcea, Leonardo C.
    Perrin, Nicolas
    [J]. ALGEBRAIC GEOMETRY, 2018, 5 (05): : 568 - 595
  • [9] A chevalley formula in equivariant K-theory
    Willems, Matthieu
    [J]. JOURNAL OF ALGEBRA, 2007, 308 (02) : 764 - 779
  • [10] K-theory of flag Bott manifolds
    Paul, Bidhan
    Uma, Vikraman
    [J]. FORUM MATHEMATICUM, 2024, 36 (03) : 621 - 639