Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds

被引:4
|
作者
Naito, Satoshi [1 ]
Orr, Daniel [2 ]
Sagaki, Daisuke [3 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
[2] Virginia Tech, Dept Math MC 0123, 460 McBryde Hall,225 Stanger St, Blacksburg, VA 24061 USA
[3] Univ Tsukuba, Inst Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, Japan
关键词
Chevalley formula; Monk formula; Semi-infinite LS path; Semi-infinite flag manifold; (Quantum) Schubert calculus; PATH MODEL; AFFINE; REPRESENTATIONS; MODULES; ALGEBRAS;
D O I
10.1016/j.aim.2021.107828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Chevalley formula for anti-dominant weights in the torus-equivariant K-group of semi-infinite flag manifolds, which is described explicitly in terms of semi-infinite Lakshmibai-Seshadri paths (or equivalently, quantum Lakshmibai-Seshadri paths); in contrast to the Chevalley formula for dominant weights in our previous paper [17], the formula for anti-dominant weights has a significant finiteness property. Based on geometric results established in [17], our proof is representation-theoretic, and the Chevalley formula for anti-dominant weights follows from a certain identity for the graded characters of Demazure submodules of a level-zero extremal weight module over a quantum affine algebra; in the proof of this identity, we make use of the (combinatorial) standard monomial theory for semi-infinite Lakshmibai-Seshadri paths, and also a string property of Demazure-like subsets of the set of semi-infinite Lakshmibai-Seshadri paths of a fixed shape, which gives an explicit realization of the crystal basis of a level-zero extremal weight module. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:59
相关论文
共 13 条
  • [1] EQUIVARIANT K-THEORY OF SEMI-INFINITE FLAG MANIFOLDS AND THE PIERI-CHEVALLEY FORMULA
    Kato, Syu
    Naito, Satoshi
    Sagaki, Daisuke
    [J]. DUKE MATHEMATICAL JOURNAL, 2020, 169 (13) : 2421 - 2500
  • [2] A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory
    Lenart, Cristian
    Naito, Satoshi
    Sagaki, Daisuke
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (03):
  • [3] Chevalley formula for anti-dominant minuscule fundamental weights in the equivariant quantum K-group of partial flag manifolds
    Kouno, Takafumi
    Naito, Satoshi
    Sagaki, Daisuke
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 192
  • [4] SEMI-INFINITE SCHUBERT VARIETIES AND QUANTUM K-THEORY OF FLAG MANIFOLDS
    Braverman, Alexander
    Finkelberg, Michael
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (04) : 1147 - 1168
  • [5] A chevalley formula in equivariant K-theory
    Willems, Matthieu
    [J]. JOURNAL OF ALGEBRA, 2007, 308 (02) : 764 - 779
  • [6] Equivariant K-theory of the semi-infinite flag manifold as a nil-DAHA module
    Daniel Orr
    [J]. Selecta Mathematica, 2023, 29
  • [7] Equivariant K-theory of the semi-infinite flag manifold as a nil-DAHA module
    Orr, Daniel
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (03):
  • [8] Inverse K-Chevalley formulas for semi-infinite flag manifolds, II: Arbitrary weights in ADE type
    Lenart, Cristian
    Naito, Satoshi
    Orr, Daniel
    Sagaki, Daisuke
    [J]. ADVANCES IN MATHEMATICS, 2023, 423
  • [9] Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type
    Kouno, Takafumi
    Naito, Satoshi
    Orr, Daniel
    Sagaki, Daisuke
    [J]. FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [10] Equivariant K-theory of quaternionic flag manifolds
    Mare, Augustin-Liviu
    Willems, Matthieu
    [J]. JOURNAL OF K-THEORY, 2009, 4 (03) : 537 - 557