Chevalley formula for anti-dominant minuscule fundamental weights in the equivariant quantum K-group of partial flag manifolds
被引:3
|
作者:
Kouno, Takafumi
论文数: 0引用数: 0
h-index: 0
机构:
Waseda Univ, Fac Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, JapanWaseda Univ, Fac Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
Kouno, Takafumi
[1
]
Naito, Satoshi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math, 2-12-1 Oh Okayama,Meguro ku, Tokyo 1528551, JapanWaseda Univ, Fac Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
Naito, Satoshi
[2
]
Sagaki, Daisuke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Fac Pure & Appl Sci, Dept Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, JapanWaseda Univ, Fac Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
Sagaki, Daisuke
[3
]
机构:
[1] Waseda Univ, Fac Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[2] Tokyo Inst Technol, Dept Math, 2-12-1 Oh Okayama,Meguro ku, Tokyo 1528551, Japan
[3] Univ Tsukuba, Fac Pure & Appl Sci, Dept Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, Japan
Quantum Chevalley formula;
Quantum LS path;
Semi-infinite flag manifold;
Grassmannian;
(Quantum) Schubert calculus;
REPRESENTATIONS;
ALGEBRAS;
D O I:
10.1016/j.jcta.2022.105670
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we give an explicit formula of Chevalley type, in terms of the Bruhat graph, for the quantum multiplication with the class of the line bundle associated to an anti -dominant minuscule fundamental weight-omega over bar (k) in the torus-equivariant quantum K-group of the partial flag manifold G/P-J (where J = I\{k}) corresponding to the maximal (standard) parabolic subgroup P(J )of minuscule type in type A, D, E, or B. This result is obtained by proving a similar formula in a torus-equivariant K-group of the semi-infinite partial flag manifold Q(J) of minuscule type, and then by making use of the isomorphism between the torus-equivariant quantum K-group of G/P(J )and the torus-equivariant K-group of Q(J), recently established by Kato. (C) 2022 Elsevier Inc. All rights reserved.
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Naito, Satoshi
Orr, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Math MC 0123, 460 McBryde Hall,225 Stanger St, Blacksburg, VA 24061 USATokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Orr, Daniel
Sagaki, Daisuke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Inst Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Kouno, Takafumi
Naito, Satoshi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Naito, Satoshi
Orr, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Math MC 0123, 460 McBryde Hall,225 Stanger St, Blacksburg, VA 24061 USATokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Orr, Daniel
Sagaki, Daisuke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Inst Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan