A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory

被引:0
|
作者
Lenart, Cristian [1 ]
Naito, Satoshi [2 ]
Sagaki, Daisuke [3 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[2] Tokyo Inst Technol, Dept Math, 2-12-1 Oh Okayama,Meguro Ku, Tokyo 1528551, Japan
[3] Univ Tsukuba, Fac Pure & Appl Sci, Dept Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2024年 / 30卷 / 03期
关键词
Semi-infinite flag manifold; Quantum K-theory; Chevalley formula; Quantum Bruhat graph; Quantum LS paths; Quantum alcove model; Quantum Grothendieck polynomials; MODEL;
D O I
10.1007/s00029-024-00924-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a Chevalley formula for an arbitrary weight for the torus-equivariant K-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum K-theory QK(T)(G/B) of an (ordinary) flag manifold G/B; this has been a longstanding conjecture about the multiplicative structure of QK(T)(G/B). In type A(n-1), we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum K-theory QK(SLn/B); we also obtain very explicit information about the coefficients in the respective Chevalley formula.
引用
收藏
页数:44
相关论文
共 50 条