A second-order low-regularity integrator for the nonlinear Schrödinger equation

被引:0
|
作者
Alexander Ostermann
Yifei Wu
Fangyan Yao
机构
[1] University of Innsbruck,Department of Mathematics
[2] Tianjin University,Center for Applied Mathematics
[3] South China University of Technology,School of Mathematical Sciences
关键词
Schrödinger equation; Rough initial data; Second-order accuracy; Error estimates; Exponential-type integrator; 65M12; 65M15; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the d dimensional torus Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}^{d}$\end{document}. The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76, 2022). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in Hγ(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{\gamma }(\mathbb{T}^{d})$\end{document} for initial data in Hγ+2(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{\gamma +2}(\mathbb{T}^{d})$\end{document} for any γ>d/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma > d/2$\end{document}. This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986, 2019).
引用
收藏
相关论文
共 50 条
  • [41] Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥  3
    Alexandru D. Ionescu
    Carlos E. Kenig
    Communications in Mathematical Physics, 2007, 271 : 523 - 559
  • [42] Low-Regularity Integrator for the Davey-Stewartson II System
    Ning, Cui
    Kou, Xiaomin
    Wang, Yaohong
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [43] On a nonlinear second-order difference equation
    Stevo Stević
    Bratislav Iričanin
    Witold Kosmala
    Zdeněk Šmarda
    Journal of Inequalities and Applications, 2022
  • [44] On a nonlinear second-order difference equation
    Stevic, Stevo
    Iricanin, Bratislav
    Kosmala, Witold
    Smarda, Zdenek
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [45] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [46] Interaction of coupled higher order nonlinear Schrödinger equation solitons
    A. Borah
    S. Ghosh
    S. Nandy
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 221 - 225
  • [47] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [48] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [49] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [50] Energy preserving model order reduction of the nonlinear Schrödinger equation
    Bülent Karasözen
    Murat Uzunca
    Advances in Computational Mathematics, 2018, 44 : 1769 - 1796