A second-order low-regularity integrator for the nonlinear Schrödinger equation

被引:0
|
作者
Alexander Ostermann
Yifei Wu
Fangyan Yao
机构
[1] University of Innsbruck,Department of Mathematics
[2] Tianjin University,Center for Applied Mathematics
[3] South China University of Technology,School of Mathematical Sciences
关键词
Schrödinger equation; Rough initial data; Second-order accuracy; Error estimates; Exponential-type integrator; 65M12; 65M15; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the d dimensional torus Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}^{d}$\end{document}. The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76, 2022). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in Hγ(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{\gamma }(\mathbb{T}^{d})$\end{document} for initial data in Hγ+2(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{\gamma +2}(\mathbb{T}^{d})$\end{document} for any γ>d/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma > d/2$\end{document}. This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986, 2019).
引用
收藏
相关论文
共 50 条
  • [31] A second-order L2-1, difference scheme for the nonlinear time-space fractional Schrödinger equation
    Zhang, Yuting
    Feng, Xinlong
    Qian, Lingzhi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
  • [32] The low energy scattering for nonlinear Schrödinger equation
    Conghui Fang
    Zheng Han
    Revista Matemática Complutense, 2023, 36 : 125 - 140
  • [33] Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation
    Ying Wang
    Gang Wang
    Linlin Bu
    Liquan Mei
    Numerical Algorithms, 2021, 88 : 419 - 451
  • [34] An Unfiltered Low-Regularity Integrator for the KdV Equation with Solutions Below H1
    Li, Buyang
    Wu, Yifei
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2025,
  • [35] Modulation stability analysis and solitary wave solutions of nonlinear higher-order Schrödinger dynamical equation with second-order spatiotemporal dispersion
    Aly R. Seadawy
    Muhammad Arshad
    Dianchen Lu
    Indian Journal of Physics, 2019, 93 : 1041 - 1049
  • [36] Low Regularity Solutions for the General Quasilinear Ultrahyperbolic Schrödinger Equation
    Pineau, Ben
    Taylor, Mitchell A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (06)
  • [37] Dissipative property for higher order nonlinear Schrödinger equation
    Naumkin P.I.
    Sánchez-Suárez I.
    Nonlinear Analysis, Theory, Methods and Applications, 2019, 188 : 91 - 124
  • [38] Inverse Problems for the Higher Order Nonlinear Schrödinger Equation
    Faminskii A.V.
    Martynov E.V.
    Journal of Mathematical Sciences, 2023, 274 (4) : 475 - 492
  • [39] Low-regularity solutions for the Ostrovsky equation
    Huo, ZH
    Jia, YL
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 : 87 - 100
  • [40] Some regularity properties of scattering data for the derivative nonlinear Schrödinger equation
    Weng, Weifang
    Yan, Zhenya
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (05)