Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing

被引:0
|
作者
Tao Zheng
Jian Wan
Jilin Zhang
Congfeng Jiang
机构
[1] School of Computer Science and Technology,
[2] Hangzhou Dianzi University,undefined
[3] College of Information Science and Technology,undefined
[4] Zhejiang Shuren University,undefined
来源
Journal of Cloud Computing | / 11卷
关键词
Edge computing; Computation offloading; Workload scheduling; Deep reinforcement learning;
D O I
暂无
中图分类号
学科分类号
摘要
Edge computing is a new paradigm for providing cloud computing capacities at the edge of network near mobile users. It offers an effective solution to help mobile devices with computation-intensive and delay-sensitive tasks. However, the edge of network presents a dynamic environment with large number of devices, high mobility of users, heterogeneous applications and intermittent traffic. In such environment, edge computing often suffers from unbalance resource allocation, which leads to task failure and affects system performance. To tackle this problem, we proposed a deep reinforcement learning(DRL)-based workload scheduling approach with the goal of balancing the workload, reducing the service time and the failed task rate. Meanwhile, We adopt Deep-Q-Network(DQN) algorithms to solve the complexity and high dimension of workload scheduling problem. Simulation results show that our proposed approach achieves the best performance in aspects of service time, virtual machine(VM) utilization, and failed tasks rate compared with other approaches. Our DRL-based approach can provide an efficient solution to the workload scheduling problem in edge computing.
引用
收藏
相关论文
共 50 条
  • [41] Deep Reinforcement Learning for Online Latency Aware Workload Offloading in Mobile Edge Computing
    Akhavan, Zeinab
    Esmaeili, Mona
    Badnava, Babak
    Yousefi, Mohammad
    Sun, Xiang
    Devetsikiotis, Michael
    Zarkesh-Ha, Payman
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2218 - 2223
  • [42] A deep reinforcement learning based hybrid algorithm for efficient resource scheduling in edge computing environment
    Xue, Fei
    Hai, Qiuru
    Dong, Tingting
    Cui, Zhihua
    Gong, Yuelu
    INFORMATION SCIENCES, 2022, 608 : 362 - 374
  • [43] Deep reinforcement learning-based methods for resource scheduling in cloud computing: a review and future directions
    Zhou, Guangyao
    Tian, Wenhong
    Buyya, Rajkumar
    Xue, Ruini
    Song, Liang
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)
  • [44] Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks
    Zhu, Dali
    Liu, Haitao
    Li, Ting
    Sun, Jiyan
    Liang, Jie
    Zhang, Hangsheng
    Geng, Liru
    Liu, Yudong
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [45] Deep reinforcement learning-based edge computing offloading algorithm for software-defined IoT
    Zhu, Xiaojuan
    Zhang, Tianhao
    Zhang, Jinwei
    Zhao, Bao
    Zhang, Shunxiang
    Wu, Cai
    COMPUTER NETWORKS, 2023, 235
  • [46] Deep Reinforcement Learning-Based Computation Offloading for Mobile Edge Computing in 6G
    Sun, Haifeng
    Wang, Jiawei
    Yong, Dongping
    Qin, Mingwei
    Zhang, Ning
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7482 - 7493
  • [47] DRL-OS: A Deep Reinforcement Learning-Based Offloading Scheduler in Mobile Edge Computing
    Lim, Ducsun
    Lee, Wooyeob
    Kim, Won-Tae
    Joe, Inwhee
    SENSORS, 2022, 22 (23)
  • [48] A Distributed Deep Reinforcement Learning-based Optimization Scheme for Vehicle Edge Computing Task Offloading
    Li, Bingxian
    Zhu, Lin
    Tan, Long
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 218 - 223
  • [49] Collaborative Data Scheduling for Vehicular Edge Computing via Deep Reinforcement Learning
    Luo, Quyuan
    Li, Changle
    Luan, Tom H.
    Shi, Weisong
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10): : 9637 - 9650
  • [50] A deep reinforcement learning-based approach for the residential appliances scheduling
    Li, Sichen
    Cao, Di
    Huang, Qi
    Zhang, Zhenyuan
    Chen, Zhe
    Blaabjerg, Frede
    Hu, Weihao
    ENERGY REPORTS, 2022, 8 : 1034 - 1042