A deep reinforcement learning-based approach for the residential appliances scheduling

被引:8
|
作者
Li, Sichen [1 ]
Cao, Di [1 ]
Huang, Qi [1 ,2 ]
Zhang, Zhenyuan [1 ]
Chen, Zhe [3 ]
Blaabjerg, Frede [3 ]
Hu, Weihao [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
[2] Chengdu Univ Technol, Sch Energy, Chengdu, Peoples R China
[3] Aalborg Univ, Dept Energy Technol, Aalborg, Denmark
关键词
Demand response; Residential appliances scheduling; Deep reinforcement learning; LEVEL CONTROL; MANAGEMENT;
D O I
10.1016/j.egyr.2022.02.181
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper investigates the optimal real-time residential appliances scheduling of individual owner when participating in the demand response (DR) program. The proposed method is novel since we cast the optimization problem to an intelligent deep reinforcement learning (DRL) framework, which avoids solving a specific optimization model directly when facing dynamic operation conditions induced by the outdoor temperature, electricity price and resident's behavior. We consider the scheduling of power-shiftable, time-shiftable and deferrable appliances for the optimization of profit and satisfaction rate of resident. The optimization problem is first modeled as a Markov decision process and then solved by a model-free entropy-based DRL algorithm. Unlike traditional model-based methods which rely on accurate knowledge of parameters and physical models that are difficult to obtain in practice, the proposed method can develop real-time near-optimal control behavior by interacting with the environment and learning from data, which avoids the error caused by the simplification and assumption when building physical model. The proposed scheduling algorithm also achieves better tradeoff between the profit and the satisfaction rate than deterministic DRL algorithm owing to the introduction of the entropy term. Simulation results using real-world data demonstrate the effectiveness of the proposed method. (c) 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the scientific committee of the 2021 The 2nd International Conference on Power Engineering, ICPE, 2021.
引用
收藏
页码:1034 / 1042
页数:9
相关论文
共 50 条
  • [1] DEEP REINFORCEMENT LEARNING-BASED IRRIGATION SCHEDULING
    Yang, Y.
    Hu, J.
    Porter, D.
    Marek, T.
    Heflin, K.
    Kong, H.
    Sun, L.
    [J]. TRANSACTIONS OF THE ASABE, 2020, 63 (03) : 549 - 556
  • [2] An improved deep reinforcement learning-based scheduling approach for dynamic task scheduling in cloud manufacturing
    Wang, Xiaohan
    Zhang, Lin
    Liu, Yongkui
    Laili, Yuanjun
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024, 62 (11) : 4014 - 4030
  • [3] A reinforcement learning-based approach for online bus scheduling
    Liu, Yingzhuo
    Zuo, Xingquan
    Ai, Guanqun
    Liu, Yahong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 271
  • [4] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath Jr, Robert W.
    [J]. IEEE ACCESS, 2022, 10 : 125509 - 125525
  • [5] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Zheng, Tao
    Wan, Jian
    Zhang, Jilin
    Jiang, Congfeng
    [J]. JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [6] Deep Reinforcement Learning-based Scheduling for Roadside Communication Networks
    Atallah, Rihal
    Assi, Chadi
    Khahhaz, Maurice
    [J]. 2017 15TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2017,
  • [7] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Tao Zheng
    Jian Wan
    Jilin Zhang
    Congfeng Jiang
    [J]. Journal of Cloud Computing, 11
  • [8] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath, Robert W.
    [J]. IEEE Access, 2022, 10 : 125509 - 125525
  • [9] A Deep Reinforcement Learning-Based Approach in Porker Game
    Kong, Yan
    Rui, Yefeng
    Hsia, Chih-Hsien
    [J]. Journal of Computers (Taiwan), 2023, 34 (02) : 41 - 51
  • [10] Computing on Wheels: A Deep Reinforcement Learning-Based Approach
    Kazmi, S. M. Ahsan
    Tai Manh Ho
    Tuong Tri Nguyen
    Fahim, Muhammad
    Khan, Adil
    Piran, Md Jalil
    Baye, Gaspard
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22535 - 22548