Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing

被引:0
|
作者
Tao Zheng
Jian Wan
Jilin Zhang
Congfeng Jiang
机构
[1] School of Computer Science and Technology,
[2] Hangzhou Dianzi University,undefined
[3] College of Information Science and Technology,undefined
[4] Zhejiang Shuren University,undefined
来源
关键词
Edge computing; Computation offloading; Workload scheduling; Deep reinforcement learning;
D O I
暂无
中图分类号
学科分类号
摘要
Edge computing is a new paradigm for providing cloud computing capacities at the edge of network near mobile users. It offers an effective solution to help mobile devices with computation-intensive and delay-sensitive tasks. However, the edge of network presents a dynamic environment with large number of devices, high mobility of users, heterogeneous applications and intermittent traffic. In such environment, edge computing often suffers from unbalance resource allocation, which leads to task failure and affects system performance. To tackle this problem, we proposed a deep reinforcement learning(DRL)-based workload scheduling approach with the goal of balancing the workload, reducing the service time and the failed task rate. Meanwhile, We adopt Deep-Q-Network(DQN) algorithms to solve the complexity and high dimension of workload scheduling problem. Simulation results show that our proposed approach achieves the best performance in aspects of service time, virtual machine(VM) utilization, and failed tasks rate compared with other approaches. Our DRL-based approach can provide an efficient solution to the workload scheduling problem in edge computing.
引用
收藏
相关论文
共 50 条
  • [1] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Zheng, Tao
    Wan, Jian
    Zhang, Jilin
    Jiang, Congfeng
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [2] Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
    Sheng, Shuran
    Chen, Peng
    Chen, Zhimin
    Wu, Lenan
    Yao, Yuxuan
    SENSORS, 2021, 21 (05) : 1 - 19
  • [3] Deep Reinforcement Learning based Energy Scheduling for Edge Computing
    Yang, Qinglin
    Li, Peng
    2020 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2020), 2020, : 175 - 180
  • [4] Reinforcement Learning-Based Optimization for Mobile Edge Computing Scheduling Game
    Wang, Tingting
    Lu, Bingxian
    Wang, Wei
    Wei, Wei
    Yuan, Xiaochen
    Li, Jianqing
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (01): : 55 - 64
  • [5] Deep Reinforcement Learning Edge Workload Orchestrator for Vehicular Edge Computing
    Silva, Eliana Neuza
    da Silva, Fernando Mira
    2023 IEEE 9TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION, NETSOFT, 2023, : 44 - 52
  • [6] Deep Reinforcement Learning Based Task Scheduling in Edge Computing Networks
    Qi, Fan
    Li Zhuo
    Chen Xin
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 835 - 840
  • [7] Deep reinforcement learning-based microservice selection in mobile edge computing
    Guo, Feiyan
    Tang, Bing
    Tang, Mingdong
    Liang, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (02): : 1319 - 1335
  • [8] Deep reinforcement learning-based microservice selection in mobile edge computing
    Feiyan Guo
    Bing Tang
    Mingdong Tang
    Wei Liang
    Cluster Computing, 2023, 26 : 1319 - 1335
  • [9] Deep Reinforcement Learning-Based Computation Offloading in Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Min, Geyong
    Duan, Hancong
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [10] ADRLO: Adaptive deep reinforcement learning-based offloading for edge computing
    Li, Zhigang
    Wang, Yutong
    Zhang, Wentao
    Li, Shujie
    Sun, Xiaochuan
    PHYSICAL COMMUNICATION, 2023, 61