One-dimensional non-coercive problems of the calculus of variations

被引:0
|
作者
Marcelli C. [1 ]
机构
[1] Dipartimento di Matematica, Università di Perugia, 06123 Perugia
关键词
D O I
10.1007/BF01783466
中图分类号
学科分类号
摘要
We establish a necessary and sufficient condition for the existence of the minimum of the functional ∫abf(t, v′(t))dt in the class script W signdp = {v ∈ W1,p([a,b]): v(a) = 0, v(b) = d}, in terms of a limitation on the slope d. We derive some applications regarding quasi-coercive and non-coercive integrands.
引用
收藏
页码:145 / 161
页数:16
相关论文
共 50 条
  • [21] On the variational convergence of non-coercive quadratic integral functionals and semicontinuity problems
    F. Acanfora
    G. Cardone
    S. Mortola
    Nonlinear Differential Equations and Applications NoDEA, 2003, 10 : 347 - 373
  • [22] On the variational convergence of non-coercive quadratic integral functionals and semicontinuity problems
    Acanfora, F
    Cardone, G
    Mortola, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2003, 10 (03): : 347 - 373
  • [23] On non-coercive mixed problems for parameter-dependent elliptic operators
    Polkovnikov, Alexander
    Shlapunov, Alexander
    MATHEMATICAL COMMUNICATIONS, 2015, 20 (02) : 131 - 150
  • [24] Non-coercive problems for Kirchhoff–Love plates with thin rigid inclusion
    Alexander Khludnev
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [25] NON-COERCIVE ELLIPTICAL VARIATIONAL INEQUALITIES
    DEUEL, J
    HESS, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 279 (18): : 719 - 722
  • [26] NON-COERCIVE VARIATIONAL-INEQUALITIES
    BAIOCCHI, C
    GASTALDI, F
    TOMARELLI, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (14): : 647 - 650
  • [27] STOCHASTIC HOMOGENIZATION OF NON-COERCIVE FUNCTIONALS
    FACCHINETTI, G
    GAVIOLI, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 144 : 315 - 327
  • [28] Non-coercive problems for Kirchhoff-Love plates with thin rigid inclusion
    Khludnev, Alexander
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [29] On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians and their application to homogenization problems
    Hamamuki, Nao
    Nakayasu, Atsushi
    Namba, Tokinaga
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 6672 - 6693
  • [30] Non-Coercive Radially Symmetric Variational Problems: Existence, Symmetry and Convexity of Minimizers
    Crasta, Graziano
    Malusa, Annalisa
    SYMMETRY-BASEL, 2019, 11 (05):