On the variational convergence of non-coercive quadratic integral functionals and semicontinuity problems

被引:0
|
作者
F. Acanfora
G. Cardone
S. Mortola
机构
[1] Seconda Università di Napoli,Dipartimento di Ingegneria Civile
[2] Politecnico Di Milano,Dipartimento di Matematica
关键词
Γ-convergence; semicontinuity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give some results about convergence of non coercive quadratic integral functionals by examining the behaviour of coefficients. We apply our results to semicontinuity problems and we illustrate them by some examples.
引用
收藏
页码:347 / 373
页数:26
相关论文
共 50 条
  • [1] On the variational convergence of non-coercive quadratic integral functionals and semicontinuity problems
    Acanfora, F
    Cardone, G
    Mortola, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2003, 10 (03): : 347 - 373
  • [2] Convergence and extensions of variational problems with non-coercive functionals
    Ioffe, AD
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 507 - 519
  • [3] A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand
    Mariconda, C
    Treu, G
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (02) : 201 - 210
  • [4] STOCHASTIC HOMOGENIZATION OF NON-COERCIVE FUNCTIONALS
    FACCHINETTI, G
    GAVIOLI, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 144 : 315 - 327
  • [5] On limits of variational problems. The case of a non-coercive functional
    Freddi, L
    Ioffe, AD
    JOURNAL OF CONVEX ANALYSIS, 2002, 9 (02) : 439 - 462
  • [7] NON-COERCIVE ELLIPTICAL VARIATIONAL INEQUALITIES
    DEUEL, J
    HESS, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 279 (18): : 719 - 722
  • [8] NON-COERCIVE VARIATIONAL-INEQUALITIES
    BAIOCCHI, C
    GASTALDI, F
    TOMARELLI, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (14): : 647 - 650
  • [9] On the minimum problem for a class of non-coercive functionals
    Cellina, A
    Treu, G
    Zagatti, S
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) : 225 - 262
  • [10] Regularization of non-coercive quasi variational inequalities
    Giannessi, F
    Khan, AA
    CONTROL AND CYBERNETICS, 2000, 29 (01): : 91 - 110