Coulomb stress change on inland faults during megathrust earthquake cycle in southwest Japan

被引:0
|
作者
Tsukasa Mitogawa
Takuya Nishimura
机构
[1] Kyoto University,Graduate School of Science
[2] Kyoto University,Disaster Prevention Research Institute
来源
关键词
Megathrust earthquake cycle; Coulomb stress change; Viscoelasticity; Inland fault; Southwest Japan;
D O I
暂无
中图分类号
学科分类号
摘要
In the subduction zone, megathrust earthquakes may modulate the shallow crustal seismicity in the overriding plate. Historical documents indicate the frequent occurrence of large shallow crustal earthquakes in the overriding continental plate 50 years before and 10 years after the megathrust earthquakes along the Nankai trough in southwest Japan. In this study, we model megathrust earthquake cycles in a simple oblique subduction zone considering the viscoelasticity, and calculate the temporal evolution of the Coulomb failure stress changes (ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document}) on the crustal faults in the overriding plate. Further, we examine the variation of ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} depending on the location and fault type, and the active period of crustal earthquakes in which ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} exceeds the previous maximum. Our viscoelastic model suggests that the dependency of the active period on the distance from the megathrust fault is less when the intrinsic loading rate of the inland fault is low. Moreover, it suggests that the viscoelastic stress evolution on faults with negative coseismic ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} renders the active period longer or shorter than those in a pure elastic medium. The temporal evolution of ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} on most major active faults in southwest Japan can be categorized into two groups with the following different characteristics: one is that ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} is positive coseismically and peaks 10 years after a megathrust earthquake. The other is that ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} is negative coseismically, and does not recover to the preseismic one for more than 50 years after a megathrust earthquake. This can explain the temporal sequence of the historical earthquakes in southwest Japan. Our model which includes viscoelastic relaxation successfully expresses the activation of shallow crustal earthquakes in the overriding continental plate not only before the megathrust earthquake, but also after. If the apparent frictional coefficient is less than ~ 0.1, the coseismic ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} on the source faults of the 1943 Mj7.3 Tottori earthquake, 1596 M7.0 Keicho Iyo earthquake, and 1596 M7.5 Keicho Fushimi earthquake that occurred within 10 years before the megathrust earthquake along the Nankai trough is negative. Therefore, to explain the occurrence of these historical earthquakes, our model suggests that the apparent frictional coefficient must be less than ~ 0.1.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [31] STRESS-FIELD DURING THE ROTATION OF SOUTHWEST JAPAN
    TSUNAKAWA, H
    JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1986, 38 (05): : 537 - 543
  • [32] Stress loading history of earthquake faults influenced by fault/shear zone geometry and Coulomb pre-stress
    Claudia Sgambato
    Joanna Phoebe Faure Walker
    Zoë Keiki Mildon
    Gerald Patrick Roberts
    Scientific Reports, 10
  • [33] Stress loading history of earthquake faults influenced by fault/shear zone geometry and Coulomb pre-stress
    Sgambato, Claudia
    Walker, Joanna Phoebe Faure
    Mildon, Zoe Keiki
    Roberts, Gerald Patrick
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [34] Static Coulomb stress changes on faults caused by the 2008 Mw 7.9 Wenchuan, China earthquake
    Wan, Yongge
    Shen, Zheng-Kang
    TECTONOPHYSICS, 2010, 491 (1-4) : 105 - 118
  • [35] The Coulomb Stress Change Associated with the Taiwan Straits MS 7.3 Earthquake on September 16,1994 and the Risk Prediction of Its Surrounding Faults
    Wang Shaowen
    Zhan Wenhuan
    Zhang Fan
    Zhu Junjiang
    Earthquake Research in China, 2013, 27 (01) : 77 - 90
  • [36] Coseismic radiation and stress drop during the 2015 Mw 8.3 Illapel, Chile megathrust earthquake
    Yin, Jiuxun
    Yang, Hongfeng
    Yao, Huajian
    Weng, Huihui
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (04) : 1520 - 1528
  • [37] The stress change of the major activity faults in the Weihe Graben after the Wenchuan earthquake
    Sheng Dong
    Weina Yuan
    Fuqiang Shi
    EarthquakeResearchAdvances, 2021, 1 (02) : 9 - 15
  • [38] Simultaneous Reactivation of Two, Subparallel, Inland Normal Faults during the Mw 6.6 11 April 2011 Iwaki Earthquake Triggered by the Mw 9.0 Tohoku-oki, Japan, Earthquake
    Toda, S.
    Tsutsumi, H.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2013, 103 (2B) : 1584 - 1602
  • [39] Dynamic Evolution of Porosity in Lower-Crustal Faults During the Earthquake Cycle
    Michalchuk, Stephen Paul
    Zertani, Sascha
    Renard, Francois
    Fusseis, Florian
    Chogani, Alireza
    Plumper, Oliver
    Menegon, Luca
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2023, 128 (08)
  • [40] Coulomb stress change pattern and aftershock distributions associated with a blind low-angle megathrust fault, Nepalese Himalaya
    Zhou, Zhipeng
    Kusky, Timothy M.
    Tang, Chi-Chia
    TECTONOPHYSICS, 2019, 767