Coulomb stress change on inland faults during megathrust earthquake cycle in southwest Japan

被引:0
|
作者
Tsukasa Mitogawa
Takuya Nishimura
机构
[1] Kyoto University,Graduate School of Science
[2] Kyoto University,Disaster Prevention Research Institute
来源
关键词
Megathrust earthquake cycle; Coulomb stress change; Viscoelasticity; Inland fault; Southwest Japan;
D O I
暂无
中图分类号
学科分类号
摘要
In the subduction zone, megathrust earthquakes may modulate the shallow crustal seismicity in the overriding plate. Historical documents indicate the frequent occurrence of large shallow crustal earthquakes in the overriding continental plate 50 years before and 10 years after the megathrust earthquakes along the Nankai trough in southwest Japan. In this study, we model megathrust earthquake cycles in a simple oblique subduction zone considering the viscoelasticity, and calculate the temporal evolution of the Coulomb failure stress changes (ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document}) on the crustal faults in the overriding plate. Further, we examine the variation of ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} depending on the location and fault type, and the active period of crustal earthquakes in which ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} exceeds the previous maximum. Our viscoelastic model suggests that the dependency of the active period on the distance from the megathrust fault is less when the intrinsic loading rate of the inland fault is low. Moreover, it suggests that the viscoelastic stress evolution on faults with negative coseismic ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} renders the active period longer or shorter than those in a pure elastic medium. The temporal evolution of ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} on most major active faults in southwest Japan can be categorized into two groups with the following different characteristics: one is that ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} is positive coseismically and peaks 10 years after a megathrust earthquake. The other is that ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} is negative coseismically, and does not recover to the preseismic one for more than 50 years after a megathrust earthquake. This can explain the temporal sequence of the historical earthquakes in southwest Japan. Our model which includes viscoelastic relaxation successfully expresses the activation of shallow crustal earthquakes in the overriding continental plate not only before the megathrust earthquake, but also after. If the apparent frictional coefficient is less than ~ 0.1, the coseismic ΔCFS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\text{CFS}}$$\end{document} on the source faults of the 1943 Mj7.3 Tottori earthquake, 1596 M7.0 Keicho Iyo earthquake, and 1596 M7.5 Keicho Fushimi earthquake that occurred within 10 years before the megathrust earthquake along the Nankai trough is negative. Therefore, to explain the occurrence of these historical earthquakes, our model suggests that the apparent frictional coefficient must be less than ~ 0.1.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [21] Response of forearc crustal faults to the megathrust earthquake cycle: InSAR evidence from Mejillones Peninsula, Northern Chile
    Shirzaei, M.
    Buergmann, R.
    Oncken, O.
    Walter, T. R.
    Victor, P.
    Ewiak, O.
    EARTH AND PLANETARY SCIENCE LETTERS, 2012, 333 : 157 - 164
  • [22] Megathrust Stress Drop as Trigger of Aftershock Seismicity: Insights From the 2011 Tohoku Earthquake, Japan
    Dielforder, A.
    Bocchini, G. M.
    Kemna, K.
    Hampel, A.
    Harrington, R. M.
    Oncken, O.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (03)
  • [23] A megathrust earthquake cycle model for Northeast Japan: bridging the mismatch between geological uplift and geodetic subsidence
    Akinori Hashima
    Toshinori Sato
    Earth, Planets and Space, 69
  • [24] A megathrust earthquake cycle model for Northeast Japan: bridging the mismatch between geological uplift and geodetic subsidence
    Hashima, Akinori
    Sato, Toshinori
    EARTH PLANETS AND SPACE, 2017, 69
  • [25] Application of the stress release model to the Nankai earthquake sequence, southwest Japan
    Imoto, M
    TECTONOPHYSICS, 2001, 338 (3-4) : 287 - 295
  • [26] Effect of Qinghai Madoi MS7.4 earthquake on Coulomb stress and earthquake probability increment of adjacent faults
    Liu BoYan
    Xie MengYu
    Shi BaoPing
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (02): : 563 - 579
  • [27] Active fault segmentation in southwest Bulgaria and Coulomb stress triggering of the 1904 earthquake sequence
    Ganas, A
    Shanov, S
    Drakatos, G
    Dobrev, N
    Sboras, S
    Tsimi, C
    Frangov, G
    Pavlides, S
    JOURNAL OF GEODYNAMICS, 2005, 40 (2-3) : 316 - 333
  • [28] Correlation between Coulomb stress imparted by the 2011 Tohoku-Oki earthquake and seismicity rate change in Kanto, Japan
    Ishibe, Takeo
    Satake, Kenji
    Sakai, Shin'ichi
    Shimazaki, Kunihiko
    Tsuruoka, Hiroshi
    Yokota, Yusuke
    Nakagawa, Shigeki
    Hirata, Naoshi
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 201 (01) : 112 - 134
  • [29] Earthquake Growth Inhibited at Higher Coulomb Stress Change Rate at Groningen
    Tamama, Y.
    Acosta, M.
    Bourne, S. J.
    Avouac, J. P.
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (20)
  • [30] Stress change in southwest Japan due to the 1944-1946 Nankai megathrust rupture sequence based on a 3-D heterogeneous rheological model
    Hashima, Akinori
    Hori, Takane
    Iinuma, Takeshi
    Murakami, Sota
    Fujita, Kohei
    Ichimura, Tsuyoshi
    EARTH PLANETS AND SPACE, 2024, 76 (01):