Analytic Semigroup Approach to Generalized Navier–Stokes Flows in Besov Spaces

被引:1
|
作者
Zhi-Min Chen
机构
[1] University of Southampton,Ship Science
[2] Shenzhen University,School of Mathematics and Statistics
关键词
Generalized Navier–Stokes equations; well-posedness; analytic semigroup; Besov spaces; 35B32; 35B35; 35Q35; 86A10;
D O I
暂无
中图分类号
学科分类号
摘要
The energy dissipation of the Navier–Stokes equations is controlled by the viscous force defined by the Laplacian -Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta $$\end{document}, while that of the generalized Navier–Stokes equations is determined by the fractional Laplacian (-Δ)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^\alpha $$\end{document}. The existence and uniqueness problem is always solvable in a strong dissipation situation in the sense of large α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} but it becomes complicated when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is decreasing. In this paper, the well-posedness regarding to the unique existence of small time solutions and small initial data solutions is examined in critical homogeneous Besov spaces for α≥1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 1/2$$\end{document}. An analytic semigroup approach to the understanding of the generalized Navier–Stokes equations is developed and thus the well-posedness on the equations is examined in a manner different to earlier investigations.
引用
收藏
页码:709 / 724
页数:15
相关论文
共 50 条
  • [21] GLOBAL SOLUTIONS TO CHEMOTAXIS-NAVIER-STOKES EQUATIONS IN CRITICAL BESOV SPACES
    Yang, Minghua
    Fu, Zunwei
    Sun, Jinyi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 3427 - 3460
  • [22] Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces
    Yu, Yanghai
    Liu, Fang
    APPLICATIONS OF MATHEMATICS, 2024, 69 (06) : 757 - 767
  • [23] Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces
    Bae, Hantaek
    Biswas, Animikh
    Tadmor, Eitan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) : 963 - 991
  • [24] On the continuity of the solutions to the Navier–Stokes equations with initial data in critical Besov spaces
    Reinhard Farwig
    Yoshikazu Giga
    Pen-Yuan Hsu
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1495 - 1511
  • [25] SPACE-TIME ESTIMATES IN THE BESOV SPACES AND THE NAVIER-STOKES EQUATIONS
    Chen, Qionglei
    Zhang, Zhifei
    METHODS AND APPLICATIONS OF ANALYSIS, 2006, 13 (01) : 107 - 122
  • [26] The limiting uniqueness criterion by vorticity for Navier-Stokes equations in Besov spaces
    Ogawa, T
    Taniuchi, Y
    TOHOKU MATHEMATICAL JOURNAL, 2004, 56 (01) : 65 - 77
  • [27] Navier-Stokes equations with vorticity in Besov spaces of negative regular indices
    Zhang, Zujin
    Yang, Xian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (01) : 415 - 419
  • [28] WELL-POSEDNESS AND ANALYTICITY FOR GENERALIZED NAVIER-STOKES EQUATIONS IN CRITICAL FOURIER-BESOV-MORREY SPACES
    Azanzal, Achraf
    Allalou, Chakir
    Abbassi, Adil
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021, 2021
  • [29] Spaces of Smooth and Generalized Vectors of the Generator of an Analytic Semigroup and Their Applications
    V. M. Horbachuk
    M. L. Horbachuk
    Ukrainian Mathematical Journal, 2017, 69 : 561 - 597
  • [30] SPACES OF SMOOTH AND GENERALIZED VECTORS OF THE GENERATOR OF AN ANALYTIC SEMIGROUP AND THEIR APPLICATIONS
    Horbachuk, V. M.
    Horbachuk, M. L.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (04) : 561 - 597