Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images

被引:0
|
作者
B. Bhaskar Reddy
M. Venkata Sudhakar
P. Rahul Reddy
P. Raghava Reddy
机构
[1] St. Peters Engineering College,ECE Department
[2] Lakireddy Bali Reddy College of Engineering,Electronics and Communication Engineering
[3] Geethanjali Institute of Science and Technology,Electronics and Communication Engineering
来源
Multimedia Systems | 2023年 / 29卷
关键词
COVID-19; Pre-processing; Ensemble deep honey architecture; Honey badger algorithm; Data augmentation; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the infectious disease COVID-19 remains to have a catastrophic effect on the lives of human beings all over the world. To combat this deadliest disease, it is essential to screen the affected people quickly and least inexpensively. Radiological examination is considered the most feasible step toward attaining this objective; however, chest X-ray (CXR) and computed tomography (CT) are the most easily accessible and inexpensive options. This paper proposes a novel ensemble deep learning-based solution to predict the COVID-19-positive patients using CXR and CT images. The main aim of the proposed model is to provide an effective COVID-19 prediction model with a robust diagnosis and increase the prediction performance. Initially, pre-processing, like image resizing and noise removal, is employed using image scaling and median filtering techniques to enhance the input data for further processing. Various data augmentation styles, such as flipping and rotation, are applied to capable the model to learn the variations during training and attain better results on a small dataset. Finally, a new ensemble deep honey architecture (EDHA) model is introduced to effectively classify the COVID-19-positive and -negative cases. EDHA combines three pre-trained architectures like ShuffleNet, SqueezeNet, and DenseNet-201, to detect the class value. Moreover, a new optimization algorithm, the honey badger algorithm (HBA), is adapted in EDHA to determine the best values for the hyper-parameters of the proposed model. The proposed EDHA is implemented in the Python platform and evaluates the performance in terms of accuracy, sensitivity, specificity, precision, f1-score, AUC, and MCC. The proposed model has utilized the publicly available CXR and CT datasets to test the solution’s efficiency. As a result, the simulated outcomes showed that the proposed EDHA had achieved better performance than the existing techniques in terms of Accuracy, Sensitivity, Specificity, Precision, F1-Score, MCC, AUC, and Computation time are 99.1%, 99%, 98.6%, 99.6%, 98.9%, 99.2%, 0.98, and 820 s using the CXR dataset.
引用
收藏
页码:2009 / 2035
页数:26
相关论文
共 50 条
  • [41] COVID-19 diagnosis from chest CT scan images using deep learning
    Alassiri, Raghad
    Abukhodair, Felwa
    Kalkatawi, Manal
    Khashoggi, Khalid
    Alotaibi, Reem
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2022, 32 (03): : 65 - 72
  • [42] COVID-19 and Pneumonia detection and web deployment from CT scan and X-ray images using deep learning
    Islam, Nahid
    Mohsin, Abu S. M.
    Choudhury, Shadab Hafiz
    Shaer, Tazwar Prodhan
    Islam, Md. Adnan
    Sadat, Omar
    Taz, Nahid Hossain
    PLOS ONE, 2024, 19 (07):
  • [43] A dataset of COVID-19 x-ray chest images
    Fraiwan, Mohammad
    Khasawneh, Natheer
    Khassawneh, Basheer
    Ibnian, Ali
    DATA IN BRIEF, 2023, 47
  • [44] Deep Ensemble Model for COVID-19 Diagnosis and Classification Using Chest CT Images
    Ragab, Mahmoud
    Eljaaly, Khalid
    Alhakamy, Nabil A.
    Alhadrami, Hani A.
    Bahaddad, Adel A.
    Abo-Dahab, Sayed M.
    Khalil, Eied M.
    BIOLOGY-BASEL, 2022, 11 (01):
  • [45] Ensemble of Convolutional Neural Networks for COVID-19 Localization on Chest X-ray Images
    Marcomini, Karem D.
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (08)
  • [46] COVID-19 prognosis using limited chest X-ray images
    Mondal, Arnab Kumar
    APPLIED SOFT COMPUTING, 2022, 122
  • [47] CNN Based COVID-19 Prediction from Chest X-ray Images
    Alam, Kazi Nabiul
    Khan, Mohammad Monirujjaman
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 486 - 492
  • [48] RELIABLE COVID-19 DETECTION USING CHEST X-RAY IMAGES
    Degerli, Aysen
    Ahishali, Mete
    Kiranyaz, Serkan
    Chowdhury, Muhammad E. H.
    Gabbouj, Moncef
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 185 - 189
  • [49] Feature-level ensemble approach for COVID-19 detection using chest X-ray images
    Ho, Thi Kieu Khanh
    Gwak, Jeonghwan
    PLOS ONE, 2022, 17 (07):
  • [50] Classification of Chest X-ray Images to Diagnose Covid-19 using Deep Learning Techniques
    Santos Silva, Isabel Heloise
    Barros Negreiros, Ramoni Reus
    Firmino Alves, Andre Luiz
    Gomes Valadares, Dalton Cezane
    Perkusich, Angelo
    WINSYS : PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE SYSTEMS, 2022, : 93 - 100