Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images

被引:0
|
作者
B. Bhaskar Reddy
M. Venkata Sudhakar
P. Rahul Reddy
P. Raghava Reddy
机构
[1] St. Peters Engineering College,ECE Department
[2] Lakireddy Bali Reddy College of Engineering,Electronics and Communication Engineering
[3] Geethanjali Institute of Science and Technology,Electronics and Communication Engineering
来源
Multimedia Systems | 2023年 / 29卷
关键词
COVID-19; Pre-processing; Ensemble deep honey architecture; Honey badger algorithm; Data augmentation; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the infectious disease COVID-19 remains to have a catastrophic effect on the lives of human beings all over the world. To combat this deadliest disease, it is essential to screen the affected people quickly and least inexpensively. Radiological examination is considered the most feasible step toward attaining this objective; however, chest X-ray (CXR) and computed tomography (CT) are the most easily accessible and inexpensive options. This paper proposes a novel ensemble deep learning-based solution to predict the COVID-19-positive patients using CXR and CT images. The main aim of the proposed model is to provide an effective COVID-19 prediction model with a robust diagnosis and increase the prediction performance. Initially, pre-processing, like image resizing and noise removal, is employed using image scaling and median filtering techniques to enhance the input data for further processing. Various data augmentation styles, such as flipping and rotation, are applied to capable the model to learn the variations during training and attain better results on a small dataset. Finally, a new ensemble deep honey architecture (EDHA) model is introduced to effectively classify the COVID-19-positive and -negative cases. EDHA combines three pre-trained architectures like ShuffleNet, SqueezeNet, and DenseNet-201, to detect the class value. Moreover, a new optimization algorithm, the honey badger algorithm (HBA), is adapted in EDHA to determine the best values for the hyper-parameters of the proposed model. The proposed EDHA is implemented in the Python platform and evaluates the performance in terms of accuracy, sensitivity, specificity, precision, f1-score, AUC, and MCC. The proposed model has utilized the publicly available CXR and CT datasets to test the solution’s efficiency. As a result, the simulated outcomes showed that the proposed EDHA had achieved better performance than the existing techniques in terms of Accuracy, Sensitivity, Specificity, Precision, F1-Score, MCC, AUC, and Computation time are 99.1%, 99%, 98.6%, 99.6%, 98.9%, 99.2%, 0.98, and 820 s using the CXR dataset.
引用
收藏
页码:2009 / 2035
页数:26
相关论文
共 50 条
  • [31] Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images
    Vinayakumar Ravi
    Harini Narasimhan
    Chinmay Chakraborty
    Tuan D. Pham
    Multimedia Systems, 2022, 28 : 1401 - 1415
  • [32] Diagnosis of COVID-19 Using Chest X-ray Images and Disease Symptoms Based on Stacking Ensemble Deep Learning
    AlMohimeed, Abdulaziz
    Saleh, Hager
    El-Rashidy, Nora
    Saad, Redhwan M. A.
    El-Sappagh, Shaker
    Mostafa, Sherif
    DIAGNOSTICS, 2023, 13 (11)
  • [33] Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images
    Ukwuoma, Chiagoziem C.
    Cai, Dongsheng
    Bin Heyat, Md Belal
    Bamisile, Olusola
    Adun, Humphrey
    Al-Huda, Zaid
    Al-antari, Mugahed A.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (07)
  • [34] Deep learning based prediction of COVID-19 virus using chest X-Ray
    Jain, Rachna
    Gupta, Meenu
    Jain, Kunal
    Kang, Sandeep
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (01) : 155 - 173
  • [35] CoroNet: A Deep Network Architecture for Enhanced Identification of COVID-19 from Chest X-ray Images
    Agarwal, Chirag
    Khobahi, Shahin
    Schonfeld, Dan
    Soltanalian, Mojtaba
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [36] COVIDNet: An Automatic Architecture for COVID-19 Detection With Deep Learning From Chest X-Ray Images
    He, Lang
    Tiwari, Prayag
    Su, Rui
    Shi, Xiuying
    Marttinen, Pekka
    Kumar, Neeraj
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11376 - 11384
  • [37] EDL-COVID: Ensemble Deep Learning for COVID-19 Case Detection From Chest X-Ray Images
    Tang, Shanjiang
    Wang, Chunjiang
    Nie, Jiangtian
    Kumar, Neeraj
    Zhang, Yang
    Xiong, Zehui
    Barnawi, Ahmed
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6539 - 6549
  • [38] Deep-CoV: An integrated deep learning model to detect COVID-19 using chest X-ray and CT images
    Roy, Sanjib
    Das, Ayan Kumar
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (02) : 369 - 400
  • [39] FractalCovNet architecture for COVID-19 Chest X-ray image Classification and CT-scan image Segmentation
    Munusamy, Hemalatha
    Muthukumar, Karthikeyan Jadarajan
    Gnanaprakasam, Shriram
    Shanmugakani, Thanga Revathi
    Sekar, Aravindkumar
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (03) : 1025 - 1038
  • [40] Integrated ensemble CNN and explainable AI for COVID-19 diagnosis from CT scan and X-ray images
    Rajpoot, Reenu
    Gour, Mahesh
    Jain, Sweta
    Semwal, Vijay Bhaskar
    SCIENTIFIC REPORTS, 2024, 14 (01):