The Number of Optimal Matchings for Euclidean Assignment on the Line

被引:0
|
作者
Sergio Caracciolo
Vittorio Erba
Andrea Sportiello
机构
[1] University of Milan and INFN,Dipartimento di Fisica
[2] LIPN,undefined
[3] and CNRS,undefined
[4] Université Paris 13,undefined
[5] Sorbonne Paris Cité,undefined
来源
关键词
Random combinatorial optimization; Euclidean correlations; Assignment problem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Random Euclidean Assignment Problem in dimension d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, with linear cost function. In this version of the problem, in general, there is a large degeneracy of the ground state, i.e. there are many different optimal matchings (say, ∼exp(SN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \exp (S_N)$$\end{document} at size N). We characterize all possible optimal matchings of a given instance of the problem, and we give a simple product formula for their number. Then, we study the probability distribution of SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document} (the zero-temperature entropy of the model), in the uniform random ensemble. We find that, for large N, SN∼12NlogN+Ns+OlogN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N \sim \frac{1}{2} N \log N + N s + {\mathcal {O}}\left( \log N \right) $$\end{document}, where s is a random variable whose distribution p(s) does not depend on N. We give expressions for the moments of p(s), both from a formulation as a Brownian process, and via singularity analysis of the generating functions associated to SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document}. The latter approach provides a combinatorial framework that allows to compute an asymptotic expansion to arbitrary order in 1/N for the mean and the variance of SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Optimal Location and Line Assignment for Electric Bus Charging Stations
    Ferro, Giulio
    Minciardi, Riccardo
    Parodi, Luca
    Robba, Michela
    IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 1950 - 1961
  • [42] Searching optimal resequencing and feature assignment on an automated assembly line
    Lim, A
    Xu, Z
    ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 491 - 498
  • [43] On the Number of k-Matchings in Graphs
    Das, Kinkar Chandra
    Ghalavand, Ali
    Ashrafi, Ali Reza
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (04) : 563 - 570
  • [44] Matchings in graphs with a given number of cuts
    Liu, Jinfeng
    Huang, Fei
    Wagner, Stephan
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 473 - 481
  • [45] On the number of perfect matchings of middle graphs
    Lai, Jingchao
    Yan, Weigen
    Feng, Xing
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 86 - 91
  • [46] Global forcing number for maximal matchings
    Vukitcevic, Damir
    Zhao, Shuang
    Sedlar, Jelena
    Xu, Shou-Jun
    Doslic, Tomislav
    DISCRETE MATHEMATICS, 2018, 341 (03) : 801 - 809
  • [47] Trees with maximum number of maximal matchings
    Gorska, Joanna
    Skupien, Zdzislaw
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1367 - 1377
  • [48] On the Number of Group-Weighted Matchings
    Jeff Kahn
    Roy Meshulam
    Journal of Algebraic Combinatorics, 1998, 7 : 285 - 290
  • [49] The Number of Domino Matchings in the Game of Memory
    Young, Donovan
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (08)
  • [50] The Number of Maximal Matchings in Polyphenylene Chains
    Ash, Zachary
    Short, Taylor
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 10 (04): : 343 - 360