The Number of Optimal Matchings for Euclidean Assignment on the Line

被引:0
|
作者
Sergio Caracciolo
Vittorio Erba
Andrea Sportiello
机构
[1] University of Milan and INFN,Dipartimento di Fisica
[2] LIPN,undefined
[3] and CNRS,undefined
[4] Université Paris 13,undefined
[5] Sorbonne Paris Cité,undefined
来源
关键词
Random combinatorial optimization; Euclidean correlations; Assignment problem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Random Euclidean Assignment Problem in dimension d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, with linear cost function. In this version of the problem, in general, there is a large degeneracy of the ground state, i.e. there are many different optimal matchings (say, ∼exp(SN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \exp (S_N)$$\end{document} at size N). We characterize all possible optimal matchings of a given instance of the problem, and we give a simple product formula for their number. Then, we study the probability distribution of SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document} (the zero-temperature entropy of the model), in the uniform random ensemble. We find that, for large N, SN∼12NlogN+Ns+OlogN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N \sim \frac{1}{2} N \log N + N s + {\mathcal {O}}\left( \log N \right) $$\end{document}, where s is a random variable whose distribution p(s) does not depend on N. We give expressions for the moments of p(s), both from a formulation as a Brownian process, and via singularity analysis of the generating functions associated to SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document}. The latter approach provides a combinatorial framework that allows to compute an asymptotic expansion to arbitrary order in 1/N for the mean and the variance of SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Finding all stable matchings with assignment constraints
    Gutin, Gregory Z.
    Neary, Philip R.
    Yeo, Anders
    GAMES AND ECONOMIC BEHAVIOR, 2024, 148 : 244 - 263
  • [32] Computing optimal Morse matchings
    Joswig, M
    Pfetsch, ME
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (01) : 11 - 25
  • [33] SENSITIVITY ANALYSIS OF OPTIMAL MATCHINGS
    WEBER, GM
    NETWORKS, 1981, 11 (01) : 41 - 56
  • [34] On the Number of 4-Matchings in Graphs
    Behmaram, A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (02) : 381 - 388
  • [35] On the number of group-weighted matchings
    Kahn, J
    Meshulam, R
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (03) : 285 - 290
  • [36] Rainbow number of matchings in planar graphs
    Jin, Zemin
    Ye, Kun
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2846 - 2858
  • [37] The Maximum Number of Dominating Induced Matchings
    Lin, Min Chih
    Moyano, Veronica A.
    Rautenbach, Dieter
    Szwarcfiter, Jayme L.
    JOURNAL OF GRAPH THEORY, 2015, 78 (04) : 258 - 268
  • [38] Number of 6-Matchings in Graphs
    Vesalian, R.
    Namazi, R.
    Asgari, F.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 73 (01) : 239 - 265
  • [39] On the Number of k-Matchings in Graphs
    Kinkar Chandra Das
    Ali Ghalavand
    Ali Reza Ashrafi
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 563 - 570
  • [40] Searching optimal resequencing and feature assignment on an automated assembly line
    Lim, A.
    Xu, Z.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 (03) : 361 - 371