The Number of Optimal Matchings for Euclidean Assignment on the Line

被引:0
|
作者
Sergio Caracciolo
Vittorio Erba
Andrea Sportiello
机构
[1] University of Milan and INFN,Dipartimento di Fisica
[2] LIPN,undefined
[3] and CNRS,undefined
[4] Université Paris 13,undefined
[5] Sorbonne Paris Cité,undefined
来源
关键词
Random combinatorial optimization; Euclidean correlations; Assignment problem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Random Euclidean Assignment Problem in dimension d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, with linear cost function. In this version of the problem, in general, there is a large degeneracy of the ground state, i.e. there are many different optimal matchings (say, ∼exp(SN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \exp (S_N)$$\end{document} at size N). We characterize all possible optimal matchings of a given instance of the problem, and we give a simple product formula for their number. Then, we study the probability distribution of SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document} (the zero-temperature entropy of the model), in the uniform random ensemble. We find that, for large N, SN∼12NlogN+Ns+OlogN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N \sim \frac{1}{2} N \log N + N s + {\mathcal {O}}\left( \log N \right) $$\end{document}, where s is a random variable whose distribution p(s) does not depend on N. We give expressions for the moments of p(s), both from a formulation as a Brownian process, and via singularity analysis of the generating functions associated to SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document}. The latter approach provides a combinatorial framework that allows to compute an asymptotic expansion to arbitrary order in 1/N for the mean and the variance of SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_N$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] The Number of Optimal Matchings for Euclidean Assignment on the Line
    Caracciolo, Sergio
    Erba, Vittorio
    Sportiello, Andrea
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (01)
  • [2] On the number of perfect matchings of line graphs
    Dong, Fengming
    Yan, Weigen
    Zhang, Fuji
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (06) : 794 - 801
  • [3] On the number of perfect matchings in the line graph of a traceable graph
    Chen, Haiyan
    Ye, Yinzhu
    DISCRETE APPLIED MATHEMATICS, 2023, 327 : 110 - 118
  • [4] Graphs with second smallest number of perfect matchings of line graphs
    Liu, Yan
    Zhou, Xue
    ARS COMBINATORIA, 2020, 153 : 15 - 31
  • [5] A new lower bound for the number of perfect matchings of line graph
    Zhou, Xue
    INFORMATION PROCESSING LETTERS, 2015, 115 (02) : 269 - 274
  • [6] Euclidean matchings and minimality of hyperplane arrangements
    Lofano, Davide
    Paolini, Giovanni
    DISCRETE MATHEMATICS, 2021, 344 (03)
  • [7] ON OPTIMAL MATCHINGS
    AJTAI, M
    KOMLOS, J
    TUSNADY, G
    COMBINATORICA, 1984, 4 (04) : 259 - 264
  • [8] EUCLIDEAN SEMI-MATCHINGS OF RANDOM SAMPLES
    STEELE, JM
    MATHEMATICAL PROGRAMMING, 1992, 53 (02) : 127 - 146
  • [9] Computing Euclidean bottleneck matchings in higher dimensions
    Efrat, A
    Katz, MJ
    INFORMATION PROCESSING LETTERS, 2000, 75 (04) : 169 - 174
  • [10] On the number of matchings of a tree
    Wagner, Stephan G.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (04) : 1322 - 1330