Insulating to relativistic quantum Hall transition in disordered graphene

被引:0
|
作者
E. Pallecchi
M. Ridene
D. Kazazis
F. Lafont
F. Schopfer
W. Poirier
M. O. Goerbig
D. Mailly
A. Ouerghi
机构
[1] CNRS - Laboratoire de Photonique et de Nanostructures,Département de Physique
[2] LPMC,undefined
[3] Faculté des Sciences de Tunis,undefined
[4] Université Tunis-Manar,undefined
[5] Campus Universitaire,undefined
[6] Laboratoire National de Métrologie et d'Essais,undefined
[7] Laboratoire de Physique des Solides,undefined
[8] CNRS UMR 8502,undefined
[9] Université,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quasi-particle excitations in graphene exhibit a unique behavior concerning two key phenomena of mesoscopic physics: electron localization and the quantum Hall effect. A direct transition between these two states has been found in disordered two-dimensional electron gases at low magnetic field. It has been suggested that it is a quantum phase transition, but the nature of the transition is still debated. Despite the large number of works studying either the localization or the quantum Hall regime in graphene, such a transition has not been investigated for Dirac fermions. Here we discuss measurements on low-mobility graphene where the localized state at low magnetic fields and a quantum Hall state at higher fields are observed. We find that the system undergoes a direct transition from the insulating to the Hall conductor regime. Remarkably, the transverse magneto-conductance shows a temperature independent crossing point, pointing to the existence of a genuine quantum phase transition.
引用
收藏
相关论文
共 50 条
  • [21] Designer quantum spin Hall phase transition in molecular graphene
    Ghaemi, Pouyan
    Gopalakrishnan, Sarang
    Hughes, Taylor L.
    PHYSICAL REVIEW B, 2012, 86 (20):
  • [22] Scaling of the quantum Hall plateau-plateau transition in graphene
    Giesbers, A. J. M.
    Zeitler, U.
    Ponomarenko, L. A.
    Yang, R.
    Novoselov, K. S.
    Geim, A. K.
    Maan, J. C.
    PHYSICAL REVIEW B, 2009, 80 (24)
  • [23] Excitonic gap, phase transition, and quantum Hall effect in graphene
    Gusynin, V. P.
    Miransky, V. A.
    Sharapov, S. G.
    Shovkovy, I. A.
    PHYSICAL REVIEW B, 2006, 74 (19)
  • [24] Edge state transport through disordered graphene nanoribbons in the quantum Hall regime
    Duerr, Fabian
    Oostinga, Jeroen B.
    Gould, Charles
    Molenkamp, Laurens W.
    PHYSICAL REVIEW B, 2012, 86 (08)
  • [25] Unconventional features in the quantum Hall regime of disordered graphene: Percolating impurity states and Hall conductance quantization
    Leconte, Nicolas
    Ortmann, Frank
    Cresti, Alessandro
    Roche, Stephan
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [26] Quantum Hall effect in bilayer graphene: Disorder effect and quantum phase transition
    Ma, R.
    Sheng, L.
    Shen, R.
    Liu, M.
    Sheng, D. N.
    PHYSICAL REVIEW B, 2009, 80 (20)
  • [27] Coexistence of Quantum-Spin-Hall and Quantum-Hall-Topological-Insulating States in Graphene/hBN on SrTiO3 Substrate
    Obata, Reiji
    Kosugi, Mioko
    Kikkawa, Takashi
    Kuroyama, Kazuyuki
    Yokouchi, Tomoyuki
    Shiomi, Yuki
    Maruyama, Shigeo
    Hirakawa, Kazuhiko
    Saitoh, Eiji
    Haruyama, Junji
    ADVANCED MATERIALS, 2024, 36 (19)
  • [28] Dimensional Crossover of the Integer Quantum Hall Plateau Transition and Disordered Topological Pumping
    Ippoliti, Matteo
    Bhatt, R. N.
    PHYSICAL REVIEW LETTERS, 2020, 124 (08)
  • [29] Quantum Hall Plateau Transition in Graphene with Spatially Correlated Random Hopping
    Kawarabayashi, Tohru
    Hatsugai, Yasuhiro
    Aoki, Hideo
    PHYSICAL REVIEW LETTERS, 2009, 103 (15)
  • [30] Theories for the correlated insulating states and quantum anomalous Hall effect phenomena in twisted bilayer graphene
    Liu, Jianpeng
    Dai, Xi
    PHYSICAL REVIEW B, 2021, 103 (03)