Phase-field fracture simulations of the Brazilian splitting test

被引:1
|
作者
Carola Bilgen
Stefanie Homberger
Kerstin Weinberg
机构
[1] Universität Siegen,Fakultät IV, Dept. Maschinenbau, Lehrstuhl für Festkörpermechanik
来源
关键词
Phase-field fracture; Brazilian splitting test; Crack driving force; Crack initiation; Analytical solution;
D O I
暂无
中图分类号
学科分类号
摘要
The tensile strength of brittle and tension-sensitive materials can be determined experimentally by the Brazilian test. To complement the experimental results numerical methods are required which predict the effective properties of the material as an outcome of the calculations. Here a modified phase-field approach to fracture is presented which is able to find the position of the crack, to determine the stress distribution in the (cracking) specimen and to quantify the tensile resistance of the material. Especially we discuss the definition of the phase-field crack driving forces and show by comparison to the analytical solution of the Brazilian test that common strategies of energy splitting are not applicable. Compressive split fracture needs to be driven by the stress state and requires a driving force based on a criterion of fracture mechanics. To demonstrate the predictive capability of the presented approach numerical simulations in two and three dimensions are compared to experimentally obtained results.
引用
收藏
页码:85 / 98
页数:13
相关论文
共 50 条
  • [31] An adaptive local algorithm for solving the phase-field evolution equation in the phase-field model for fracture
    Wang, Qiao
    Yue, Qiang
    Huang, Chengbin
    Zhou, Wei
    Chang, Xiaolin
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 214
  • [32] Phase-field Modeling and Simulations of Dendrite Growth
    Takaki, Tomohiro
    ISIJ INTERNATIONAL, 2014, 54 (02) : 437 - 444
  • [33] A phase-field model for fracture in biological tissues
    Arun Raina
    Christian Miehe
    Biomechanics and Modeling in Mechanobiology, 2016, 15 : 479 - 496
  • [34] Phase-Field Modeling Fracture in Anisotropic Materials
    Li, Haifeng
    Wang, Wei
    Cao, Yajun
    Liu, Shifan
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [35] A phase-field description of dynamic brittle fracture
    Borden, Michael J.
    Verhoosel, Clemens V.
    Scott, Michael A.
    Hughes, Thomas J. R.
    Landis, Chad M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 : 77 - 95
  • [36] A spatially adaptive phase-field model of fracture
    Phansalkar, Dhananjay
    Weinberg, Kerstin
    Ortiz, Michael
    Leyendecker, Sigrid
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
  • [37] Phase-field simulation of fracture in Polymethyl Methacrylate
    Pour, Mohsen Agha Mohammad
    Esmailzadeh, Peyman
    Behnagh, Reza Abdi
    Ghaffarigharehbagh, Akram
    Brighenti, Roberto
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (28) : 10153 - 10167
  • [38] Variational phase-field fracture modeling with interfaces
    Yoshioka, Keita
    Mollaali, Mostafa
    Kolditz, Olaf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
  • [39] Experimental validation of a phase-field model for fracture
    K. H. Pham
    K. Ravi-Chandar
    C. M. Landis
    International Journal of Fracture, 2017, 205 : 83 - 101
  • [40] A phase-field approach to fracture coupled with diffusion
    Wu, T.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 196 - 223