A phase-field description of dynamic brittle fracture

被引:1216
|
作者
Borden, Michael J. [1 ]
Verhoosel, Clemens V. [2 ]
Scott, Michael A. [1 ]
Hughes, Thomas J. R. [1 ]
Landis, Chad M.
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
基金
美国能源部; 美国国家科学基金会;
关键词
Phase field; Fracture mechanics; Isogeometric analysis; Adaptive refinement; T-splines; IMPROVED NUMERICAL DISSIPATION; TIME INTEGRATION ALGORITHMS; STRUCTURAL DYNAMICS; CRACK-PROPAGATION; VARIATIONAL APPROACH; FINITE-ELEMENTS; APPROXIMATION; MODELS; FORMULATION; FAILURE;
D O I
10.1016/j.cma.2012.01.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In contrast to discrete descriptions of fracture, phase-field descriptions do not require numerical tracking of discontinuities in the displacement field. This greatly reduces implementation complexity. In this work, we extend a phase-field model for quasi-static brittle fracture to the dynamic case. We introduce a phase-field approximation to the Lagrangian for discrete fracture problems and derive the coupled system of equations that govern the motion of the body and evolution of the phase-field. We study the behavior of the model in one dimension and show how it influences material properties. For the temporal discretization of the equations of motion, we present both a monolithic and staggered time integration scheme. We study the behavior of the dynamic model by performing a number of two and three dimensional numerical experiments. We also introduce a local adaptive refinement strategy and study its performance in the context of locally refined T-splines. We show that the combination of the phase-field model and local adaptive refinement provides an effective method for simulating fracture in three dimensions. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 95
页数:19
相关论文
共 50 条
  • [1] Phase-field description of brittle fracture in plates and shells
    Kiendl, Josef
    Ambati, Marreddy
    De Lorenzis, Laura
    Gomez, Hector
    Reali, Alessandro
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 374 - 394
  • [2] Evaluation of variational phase-field models for dynamic brittle fracture
    Mandal, Tushar Kanti
    Vinh Phu Nguyen
    Wu, Jian-Ying
    [J]. ENGINEERING FRACTURE MECHANICS, 2020, 235
  • [3] Microbranching instability in phase-field modelling of dynamic brittle fracture
    Bleyer, Jeremy
    Molinari, Jean-Francois
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (15)
  • [4] Adaptive phase-field modeling of dynamic brittle fracture in composite materials
    Li, Weidong
    Nguyen-Thanh, Nhon
    Du, Hejun
    Zhou, Kun
    [J]. COMPOSITE STRUCTURES, 2023, 306
  • [5] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    [J]. MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [6] Validation of the Phase-Field Model for Brittle Fracture
    Seles, Karlo
    Tomic, Zoran
    Tonkovic, Zdenko
    Gubeljak, Nenad
    [J]. 23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 1721 - 1727
  • [7] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821
  • [8] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    [J]. Meccanica, 2014, 49 : 2587 - 2601
  • [9] On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass
    Mehrmashhadi, Javad
    Bahadori, Mohammadreza
    Bobaru, Florin
    [J]. ENGINEERING FRACTURE MECHANICS, 2020, 240
  • [10] A PHASE-FIELD MODEL OF QUASISTATIC AND DYNAMIC BRITTLE FRACTURE USING A STAGGERED ALGORITHM
    Hentati, Hamdi
    Dhahri, Marwa
    Dammak, Fakhreddine
    [J]. JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2016, 11 (03) : 309 - 327