Phase-field description of brittle fracture in plates and shells

被引:109
|
作者
Kiendl, Josef [1 ]
Ambati, Marreddy [2 ]
De Lorenzis, Laura [2 ]
Gomez, Hector [3 ]
Reali, Alessandro [4 ,5 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Marine Technol, Otto Nielsens Veg 10, N-7052 Trondheim, Norway
[2] TU Braunschweig, Inst Appl Mech, Bienroder Weg 87, D-38106 Braunschweig, Germany
[3] Univ A Coruna, Dept Metodos Matemat, Campus A Coruna, La Coruna 15071, Spain
[4] Univ Pavia, Dipartimento Ingn Civile & Architettura, Via Ferrata 3, I-27100 Pavia, Italy
[5] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2a, D-85748 Garching, Germany
基金
欧洲研究理事会;
关键词
Phase field; Fracture; Shell; Plate; Kirchhoff-Love; Isogeometric analysis; ISOGEOMETRIC ANALYSIS; FINITE-ELEMENTS; CRACK-PROPAGATION; FORMULATION; NURBS; MODELS; REFINEMENT; FRAMEWORK;
D O I
10.1016/j.cma.2016.09.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an approach for phase-field modeling of fracture in thin structures like plates and shells, where the kinematics is defined by midsurface variables. Accordingly, the phase field is defined as a two-dimensional field on the midsurface of the structure. In this work, we consider brittle fracture and a Kirchhoff-Love shell model for structural analysis. We show that, for a correct description of fracture, the variation of strains through the shell thickness has to be considered and the split into tensile and compressive elastic energy components, needed to prevent cracking in compression, has to be carried out at various points through the thickness, which prohibits the typical separation of the elastic energy into membrane and bending terms. For numerical analysis, we employ isogeometric discretizations and a rotation-free Kirchhoff-Love shell formulation. In several numerical examples we show the applicability of the approach and detailed comparisons with 3D solid simulations confirm its accuracy and efficiency. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:374 / 394
页数:21
相关论文
共 50 条
  • [1] Phase-field model of brittle fracture in Reissner-Mindlin plates and shells``
    Kikis, G.
    Ambati, M.
    De Lorenzis, L.
    Klinkel, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [2] Phase-field modeling of brittle fracture along the thickness direction of plates and shells
    Ambati, Marreddy
    Heinzmann, Jonas
    Seiler, Martha
    Kaestner, Markus
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (17) : 4094 - 4118
  • [3] A phase-field description of dynamic brittle fracture
    Borden, Michael J.
    Verhoosel, Clemens V.
    Scott, Michael A.
    Hughes, Thomas J. R.
    Landis, Chad M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 : 77 - 95
  • [4] Validation of the Phase-Field Model for Brittle Fracture
    Seles, Karlo
    Tomic, Zoran
    Tonkovic, Zdenko
    Gubeljak, Nenad
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 1721 - 1727
  • [5] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [6] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821
  • [7] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    Meccanica, 2014, 49 : 2587 - 2601
  • [8] Amicromorphic phase-field model for brittle and quasi-brittle fracture
    Bharali, Ritukesh
    Larsson, Fredrik
    Jaenicke, Ralf
    COMPUTATIONAL MECHANICS, 2024, 73 (03) : 579 - 598
  • [9] A micromorphic phase-field model for brittle and quasi-brittle fracture
    Ritukesh Bharali
    Fredrik Larsson
    Ralf Jänicke
    Computational Mechanics, 2024, 73 : 579 - 598
  • [10] A convergence study of phase-field models for brittle fracture
    Linse, Thomas
    Hennig, Paul
    Kaestner, Markus
    de Borst, Rene
    ENGINEERING FRACTURE MECHANICS, 2017, 184 : 307 - 318