Multiple Bifurcations of Critical Period for a Quartic Kolmogorov Model

被引:0
|
作者
Chao-xiong Du
Wen-tao Huang
机构
[1] Changsha Normal University,School of Mathematics
[2] Guangxi Normal University,School of Mathematics and Statistics
关键词
singular values; weak center; periodic constants; bifurcation of critical period; 34C07;
D O I
暂无
中图分类号
学科分类号
摘要
Our work is concerned with the bifurcation of critical period for a quartic Kolmogorov system. By computing the periodic constants carefully, we show that point (1,1) can be a weak center of fourth order, and the weak centers condition is given. Moreover, point (1,1) can bifurcate 4 critical periods under a certain condition. In terms of multiple bifurcation of critical periodic problem for Kolmogorov model, studied results are less seen, our work is good and interesting.
引用
收藏
页码:673 / 681
页数:8
相关论文
共 50 条
  • [21] Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
    de Oliveira, Juliano A.
    de Mendonca, Hans M. J.
    da Silva, Anderson A. A.
    Leonel, Edson D.
    BRAZILIAN JOURNAL OF PHYSICS, 2019, 49 (06) : 923 - 927
  • [22] Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
    Juliano A. de Oliveira
    Hans M. J. de Mendonça
    Anderson A. A. da Silva
    Edson D. Leonel
    Brazilian Journal of Physics, 2019, 49 : 923 - 927
  • [23] Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model
    Du, Chaoxiong
    Huang, Wentao
    NONLINEAR DYNAMICS, 2013, 72 (1-2) : 197 - 206
  • [24] Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model
    Chaoxiong Du
    Wentao Huang
    Nonlinear Dynamics, 2013, 72 : 197 - 206
  • [25] Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model
    Du, Chaoxiong
    Huang, Wentao
    AIMS MATHEMATICS, 2023, 8 (11): : 26715 - 26730
  • [26] Multiple Bifurcations in a Polynomial Model of Bursting Oscillations
    De, Vries, G.
    Journal of Nonlinear Science, 8 (03): : 281 - 316
  • [27] Multiple Bifurcations in a Polynomial Model of Bursting Oscillations
    G. de Vries
    Journal of Nonlinear Science, 1998, 8 : 281 - 316
  • [28] Multiple bifurcations in a polynomial model of bursting oscillations
    de Vries, G
    JOURNAL OF NONLINEAR SCIENCE, 1998, 8 (03) : 281 - 316
  • [29] Naimark-Sacker bifurcations in a delay quartic map
    Rech, Paulo C.
    CHAOS SOLITONS & FRACTALS, 2008, 37 (02) : 387 - 392
  • [30] Critical curves and bifurcations of absorbing areas in a financial model
    Dieci, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (08) : 5265 - 5276