Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model

被引:0
|
作者
Du, Chaoxiong [1 ]
Huang, Wentao [2 ]
机构
[1] Changsha Normal Univ, Sch Math, Changsha 410100, Peoples R China
[2] Guangxi Normal Univ, Coll Math & Stat, Guilin 541006, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 11期
基金
中国国家自然科学基金;
关键词
limit cycles; Kolmogorov model; Poincar e & PRIME; succession function; stable cycles; LIMIT-CYCLES; EXISTENCE; SYSTEM;
D O I
10.3934/math.20231367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Kolmogorov model is a class of significant ecological models and is initially introduced to describe the interaction between two species occupying the same ecological habitat. Limit cycle bifurcation problem is close to Hilbertis 16th problem. In this paper, we focus on investigating bifurcation of limit cycle for a class of quartic Kolmogorov model with two positive equilibrium points. Using the singular values method, we obtain the Lyapunov constants for each positive equilibrium point and investigate their limit cycle bifurcations behavior. Furthermore, based on the analysis of their Lyapunov constants' structure and Hopf bifurcation, we give the condition that each one positive equilibrium point of studied model can bifurcate 5 limit cycles, which include 3 stable limit cycles.
引用
收藏
页码:26715 / 26730
页数:16
相关论文
共 50 条
  • [1] Limit Cycles in a Class of Quartic Kolmogorov Model with Three Positive Equilibrium Points
    Du, Chaoxiong
    Liu, Yirong
    Zhang, Qi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [2] HOPF BIFURCATION PROBLEM FOR A CLASS OF KOLMOGOROV MODEL WITH A POSITIVE NILPOTENT CRITICAL POINT
    Du, Chaoxiong
    Huang, Wentao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (04): : 1451 - 1465
  • [3] Three-Dimensional Hopf Bifurcation for a Class of Cubic Kolmogorov Model
    Du Chaoxiong
    Wang Qinlong
    Huang Wentao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [4] Hopf bifurcation and uniqueness of limit cycle for a class of quartic system
    Zhan Q.
    Xie X.
    Wu C.
    Qiu S.
    Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (4) : 388 - 392
  • [5] HOPF BIFURCATION AND UNIQUENESS OF LIMIT CYCLE FOR A CLASS OF QUARTIC SYSTEM
    Zhan Qingyi~1 Xie Xiangdong~2 Wu Chengqiang~3 Qiu Shulin~4 1 Dept.of Comput.and Inform.
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2007, (04) : 388 - 392
  • [6] Double bifurcation for a cubic Kolmogorov model
    Tao Liu
    Chaoxiong Du
    Wentao Huang
    Nonlinear Dynamics, 2017, 90 : 325 - 338
  • [7] Double bifurcation for a cubic Kolmogorov model
    Liu, Tao
    Du, Chaoxiong
    Huang, Wentao
    NONLINEAR DYNAMICS, 2017, 90 (01) : 325 - 338
  • [8] Hopf bifurcation near a double singular point
    Aston, PJ
    Spence, A
    Wei, W
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (02) : 277 - 297
  • [9] Dynamics of cutting near double Hopf bifurcation
    Molnar, Tamas G.
    Dombovari, Zoltan
    Insperger, Tamas
    Stepan, Gabor
    IUTAM SYMPOSIUM ON NONLINEAR AND DELAYED DYNAMICS OF MECHATRONIC SYSTEMS, 2017, 22 : 123 - 130
  • [10] Double Hopf Bifurcation in a Model of Magnetoconvection
    贾治元
    李继彬
    楚雄师专学报, 2000, (03) : 7 - 12