On uniqueness problems related to the Fokker-Planck-Kolmogorov equation for measures

被引:0
|
作者
Bogachev V.I. [1 ]
Röckner M. [2 ]
Shaposhnikov S.V. [1 ]
机构
[1] Moscow State University
[2] Universität Bielefeld
基金
俄罗斯基础研究基金会;
关键词
Probability Measure; Cauchy Problem; Lebesgue Measure; Parabolic Equation; Lyapunov Function;
D O I
10.1007/s10958-011-0581-6
中图分类号
学科分类号
摘要
We survey recent results related to uniqueness problems for parabolic equations for measures. We consider equations of the form ∂tμ = L*μ for bounded Borel measures on ℝd×[0, T), where L is a second order elliptic operator, for example, Lu = Δxu+(b, ∇xu), and the equation is understood as the identity ∫ (∂tu + Lu) dμ = 0 for all smooth functions u with compact support in ℝd × (0, T). Our study are motivated by equations of such a type, namely, the Fokker-Planck-Kolmogorov equations for transition probabilities of diffusion processes. Solutions are considered in the class of probability measures and in the class of signed measures with integrable densities. We present some recent positive results, give counterexamples, and formulate open problems. Bibliography: 34 titles. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:7 / 47
页数:40
相关论文
共 50 条
  • [21] A homotopic galerkin approach to the solution of the Fokker-Planck-Kolmogorov equation
    Chakravorty, Suman
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1613 - 1618
  • [22] FOKKER-PLANCK-KOLMOGOROV EQUATION AND SYNTHESIS OF RELAY CONTROL SYSTEMS
    KRASOVSK.AA
    ENGINEERING CYBERNETICS, 1967, (05): : 45 - &
  • [23] On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation
    V. I. Bogachev
    M. Röckner
    S. V. Shaposhnikov
    Doklady Mathematics, 2012, 85 : 350 - 354
  • [24] Fokker-Planck-Kolmogorov Equations with a Parameter
    Bogachev, V. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2023, 108 (02) : 357 - 362
  • [25] Stationary Fokker-Planck-Kolmogorov Equations
    Bogachev, Vladimir, I
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 3 - 24
  • [26] On the Uniqueness of Integrable and Probability Solutions to the Cauchy Problem for the Fokker-Planck-Kolmogorov Equations
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2011, 84 (01) : 565 - 570
  • [27] Implemented moments approximation technique for the Fokker-Planck-Kolmogorov equation solution
    Baratta, A
    Corbi, O
    COMPUTATIONAL MECHANICS: TECHNIQUES AND DEVELOPMENTS, 2000, : 181 - 188
  • [28] On Non-Uniqueness of Probability Solutions to the Two-Dimensional Stationary Fokker-Planck-Kolmogorov Equation
    Bogachev, V. I.
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 475 - 479
  • [29] SOLUTION OF THE FOKKER-PLANCK-KOLMOGOROV EQUATION BY THE METHOD OF FINITE-DIFFERENCES
    SAULEV, VK
    CHERNIKOV, AA
    AUTOMATION AND REMOTE CONTROL, 1990, 51 (03) : 358 - 361
  • [30] On Nonuniqueness of Probability Solutions to the Cauchy Problem for the Fokker-Planck-Kolmogorov Equation
    Bogachev, V. I.
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2021, 103 (03) : 108 - 112