On uniqueness problems related to the Fokker-Planck-Kolmogorov equation for measures

被引:0
|
作者
Bogachev V.I. [1 ]
Röckner M. [2 ]
Shaposhnikov S.V. [1 ]
机构
[1] Moscow State University
[2] Universität Bielefeld
基金
俄罗斯基础研究基金会;
关键词
Probability Measure; Cauchy Problem; Lebesgue Measure; Parabolic Equation; Lyapunov Function;
D O I
10.1007/s10958-011-0581-6
中图分类号
学科分类号
摘要
We survey recent results related to uniqueness problems for parabolic equations for measures. We consider equations of the form ∂tμ = L*μ for bounded Borel measures on ℝd×[0, T), where L is a second order elliptic operator, for example, Lu = Δxu+(b, ∇xu), and the equation is understood as the identity ∫ (∂tu + Lu) dμ = 0 for all smooth functions u with compact support in ℝd × (0, T). Our study are motivated by equations of such a type, namely, the Fokker-Planck-Kolmogorov equations for transition probabilities of diffusion processes. Solutions are considered in the class of probability measures and in the class of signed measures with integrable densities. We present some recent positive results, give counterexamples, and formulate open problems. Bibliography: 34 titles. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:7 / 47
页数:40
相关论文
共 50 条
  • [11] On the Fundamental Solution of the Fokker-Planck-Kolmogorov Equation
    Chechkin, A. G.
    Shamaev, A. S.
    DOKLADY MATHEMATICS, 2017, 95 (01) : 55 - 59
  • [12] A stationary Fokker-Planck-Kolmogorov equation with a potential
    V. I. Bogachev
    A. I. Kirillov
    S. V. Shaposhnikov
    Doklady Mathematics, 2014, 89 : 24 - 29
  • [13] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379
  • [14] VARIATIONAL PRINCIPLE FOR FOKKER-PLANCK-KOLMOGOROV EQUATION
    BOYADJIEV, TL
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1975, 28 (12): : 1587 - 1589
  • [15] New exact solutions to the Fokker-Planck-Kolmogorov equation
    Unal, Gazanfer
    Sun, Jian-Qiao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (10) : 2051 - 2059
  • [16] Approximate solutions to nonlinear random vibration problems and the Fokker-Planck-Kolmogorov equation
    Polidori, DC
    Beck, JL
    PROBABILISTIC MECHANICS & STRUCTURAL RELIABILITY: PROCEEDINGS OF THE SEVENTH SPECIALTY CONFERENCE, 1996, : 94 - 97
  • [17] Convergence to Stationary Measures in Nonlinear Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 452 - 457
  • [18] On Positive and Probability Solutions to the Stationary Fokker-Planck-Kolmogorov Equation
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 350 - 354
  • [19] On uniqueness of solutions to the Cauchy problem for degenerate Fokker-Planck-Kolmogorov equations
    Bogachev, Vladimir I.
    Roeckner, Michael
    Shaposhnikov, Stanislav V.
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (03) : 577 - 593
  • [20] The Fokker-Planck-Kolmogorov equation with nonlocal nonlinearity in the semiclassical approximation
    Trifonov A.Yu.
    Trifonova L.B.
    Russian Physics Journal, 2002, 45 (2) : 118 - 128