On uniqueness problems related to the Fokker-Planck-Kolmogorov equation for measures

被引:0
|
作者
Bogachev V.I. [1 ]
Röckner M. [2 ]
Shaposhnikov S.V. [1 ]
机构
[1] Moscow State University
[2] Universität Bielefeld
基金
俄罗斯基础研究基金会;
关键词
Probability Measure; Cauchy Problem; Lebesgue Measure; Parabolic Equation; Lyapunov Function;
D O I
10.1007/s10958-011-0581-6
中图分类号
学科分类号
摘要
We survey recent results related to uniqueness problems for parabolic equations for measures. We consider equations of the form ∂tμ = L*μ for bounded Borel measures on ℝd×[0, T), where L is a second order elliptic operator, for example, Lu = Δxu+(b, ∇xu), and the equation is understood as the identity ∫ (∂tu + Lu) dμ = 0 for all smooth functions u with compact support in ℝd × (0, T). Our study are motivated by equations of such a type, namely, the Fokker-Planck-Kolmogorov equations for transition probabilities of diffusion processes. Solutions are considered in the class of probability measures and in the class of signed measures with integrable densities. We present some recent positive results, give counterexamples, and formulate open problems. Bibliography: 34 titles. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:7 / 47
页数:40
相关论文
共 50 条
  • [1] On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation
    Bogachev, V. I.
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    SBORNIK MATHEMATICS, 2021, 212 (06) : 745 - 781
  • [2] Uniqueness problems for degenerate Fokker-Planck-Kolmogorov equations
    Bogachev V.I.
    Röckner M.
    Shaposhnikov S.V.
    Journal of Mathematical Sciences, 2015, 207 (2) : 147 - 165
  • [3] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 25 (04): : 150 - &
  • [4] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 26 (02): : 61 - 62
  • [5] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    O. A. Manita
    M. S. Romanov
    S. V. Shaposhnikov
    Doklady Mathematics, 2015, 91 : 142 - 146
  • [6] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2015, 91 (02) : 142 - 146
  • [7] Markov Uniqueness and Fokker-Planck-Kolmogorov Equations
    Albeverio, Sergio
    Bogachev, Vladimir, I
    Roeckner, Michael
    DIRICHLET FORMS AND RELATED TOPICS: IN HONOR OF MASATOSHI FUKUSHIMA'S BEIJU (IWDFRT 2022), 2022, 394 : 1 - 21
  • [8] ON UNIQUENESS OF A PROBABILITY SOLUTION TO THE CAUCHY PROBLEM FOR THE FOKKER-PLANCK-KOLMOGOROV EQUATION
    Shaposhnikov, S. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2012, 56 (01) : 96 - 115
  • [9] Approximate solution of the Fokker-Planck-Kolmogorov equation
    Di Paola, M
    Sofi, A
    PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (04) : 369 - 384
  • [10] A stationary Fokker-Planck-Kolmogorov equation with a potential
    Bogachev, V. I.
    Kirillov, A. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2014, 89 (01) : 24 - 29