Frequent episode mining within the latest time windows over event streams

被引:0
|
作者
Shukuan Lin
Jianzhong Qiao
Ya Wang
机构
[1] Northeastern University,College of Information Science and Engineering
[2] Xuchang College,School of Computer Science and Technology
来源
Applied Intelligence | 2014年 / 40卷
关键词
Episode; Minimal occurrence; Event stream;
D O I
暂无
中图分类号
学科分类号
摘要
With the wide use of EDGEs (electronic data gathering equipments) such as sensors and RFID (radio frequency identification) devices, unprecedented volumes of event streams have been generated. Mining frequent episodes within the latest time windows over event streams plays a significant role in event monitoring. It helps to generate episode rules, which can reflect the latest change, and predict future events effectively. The paper proposes how to mine MinEpi (minimal occurrence based frequent episode) within the latest time windows. The existing MinEpi mining methods are all Apriori-like, which need to scan data time after time and generate quantities of candidate episodes. This results in high time and space cost. Moreover, Apriori-like methods cannot be applied to event streams. For these problems, the paper proposes the episode matrix and frequent episode tree based mining method (EM&FET), which can generate frequent 2-episodes by constructing an episode matrix and generate higher-level frequent episodes directly by extending lower-level ones gradually, only scanning data once without candidate generation. Moreover, the paper further improves EM&FET, which enhances efficiency and saves space greatly. The experiments on different types of real data sets show the effectiveness and high efficiency of EM&FET and its improvement.
引用
收藏
页码:13 / 28
页数:15
相关论文
共 50 条
  • [31] Efficient approximate mining of frequent patterns over transactional data streams
    Ng, Willie
    Dash, Manoranjan
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2008, 5182 : 241 - 250
  • [32] An Efficient Approach for Mining Frequent Patterns over Uncertain Data Streams
    Shajib, Md. Badi-Uz-Zaman
    Samiullah, Md.
    Ahmed, Chowdhury Farhan
    Leung, Carson K.
    Pazdor, Adam G. M.
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 980 - 984
  • [33] Efficient algorithm for frequent pattern mining over uncertain data streams
    Du, Congqiang
    Shao, Zengzhen
    Journal of Computational Information Systems, 2015, 11 (21): : 7799 - 7808
  • [34] An Efficient Frequent Closed Itemsets Mining Algorithm Over Data Streams
    Tan, Jun
    Bu, Yingyong
    Yang, Bo
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGEMENT AND INDUSTRIAL ENGINEERING, VOL 3, PROCEEDINGS, 2009, : 65 - +
  • [35] Approximate mining of global closed frequent itemsets over data streams
    Guo, Lichao
    Su, Hongye
    Qu, Yu
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (06): : 1052 - 1081
  • [36] An efficient algorithm for mining maximal frequent itemsets over data streams
    Mao Y.
    Yang L.
    Li H.
    Chen Z.
    Liu L.
    Gaojishu Tongxin/Chinese High Technology Letters, 2010, 20 (03): : 246 - 252
  • [37] A Mining Maximal Frequent Itemsets over the Entire History of Data Streams
    Mao, Yinmin
    Li, Hong
    Yang, Lumin
    Chen, Zhigang
    Liu, Lixin
    FIRST INTERNATIONAL WORKSHOP ON DATABASE TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, : 413 - 417
  • [38] Online mining (recently) maximal frequent itemsets over data streams
    Li, HF
    Lee, SY
    Shan, MK
    15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications, Proceedings, 2005, : 11 - 18
  • [39] Mining maximal frequent itemsets in a sliding window over data streams
    Mao Y.
    Li H.
    Yang L.
    Liu L.
    Gaojishu Tongxin/Chinese High Technology Letters, 2010, 20 (11): : 1142 - 1148
  • [40] A simple but effective maximal frequent itemset mining algorithm over streams
    Li, H. (mydlhf@126.com), 1600, Academy Publisher (07):