Frequent episode mining within the latest time windows over event streams

被引:0
|
作者
Shukuan Lin
Jianzhong Qiao
Ya Wang
机构
[1] Northeastern University,College of Information Science and Engineering
[2] Xuchang College,School of Computer Science and Technology
来源
Applied Intelligence | 2014年 / 40卷
关键词
Episode; Minimal occurrence; Event stream;
D O I
暂无
中图分类号
学科分类号
摘要
With the wide use of EDGEs (electronic data gathering equipments) such as sensors and RFID (radio frequency identification) devices, unprecedented volumes of event streams have been generated. Mining frequent episodes within the latest time windows over event streams plays a significant role in event monitoring. It helps to generate episode rules, which can reflect the latest change, and predict future events effectively. The paper proposes how to mine MinEpi (minimal occurrence based frequent episode) within the latest time windows. The existing MinEpi mining methods are all Apriori-like, which need to scan data time after time and generate quantities of candidate episodes. This results in high time and space cost. Moreover, Apriori-like methods cannot be applied to event streams. For these problems, the paper proposes the episode matrix and frequent episode tree based mining method (EM&FET), which can generate frequent 2-episodes by constructing an episode matrix and generate higher-level frequent episodes directly by extending lower-level ones gradually, only scanning data once without candidate generation. Moreover, the paper further improves EM&FET, which enhances efficiency and saves space greatly. The experiments on different types of real data sets show the effectiveness and high efficiency of EM&FET and its improvement.
引用
收藏
页码:13 / 28
页数:15
相关论文
共 50 条
  • [21] A survey on algorithms for mining frequent itemsets over data streams
    James Cheng
    Yiping Ke
    Wilfred Ng
    Knowledge and Information Systems, 2008, 16 : 1 - 27
  • [22] A survey on algorithms for mining frequent itemsets over data streams
    Cheng, James
    Ke, Yiping
    Ng, Wilfred
    KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 16 (01) : 1 - 27
  • [23] Probabilistic frequent itemset mining over uncertain data streams
    Li, Haifeng
    Zhang, Ning
    Zhu, Jianming
    Wang, Yue
    Cao, Huaihu
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 112 : 274 - 287
  • [24] Mining Recent Frequent Itemsets over Data Streams with a Time-Sensitive Sliding Window
    Jin, Long
    Chai, Duck Jin
    Lee, Jun Wook
    Ryu, Keun Ho
    ADVANCES IN WEB AND NETWORK TECHNOLOGIES, AND INFORMATION MANAGEMENT, PROCEEDINGS, 2007, 4537 : 62 - +
  • [25] Finding frequent items in sliding windows over data streams using EBF
    Wang, ShuYun
    Xu, HeXiang
    Hu, YunFa
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 3, PROCEEDINGS, 2007, : 682 - +
  • [26] Real-Time Data Mining for Event Streams
    Roudjane, Massiva
    Rebaine, Djamal
    Khoury, Raphael
    Halle, Sylvain
    2018 IEEE 22ND INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE (EDOC 2018), 2018, : 123 - 134
  • [27] Mining frequent patterns in an arbitrary sliding window over data streams
    Li, Guohui
    Chen, Hui
    Yang, Bing
    Chen, Gang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2008, 4947 : 496 - 503
  • [28] An Efficient Frequent Closed Itemsets Mining Algorithm Over Data Streams
    Tan, Jun
    Yu, Shao-jun
    2011 SECOND INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND EDUCATION APPLICATION (ICEA 2011), 2011, : 197 - 201
  • [29] Bloom Filter Based Frequent Patterns Mining over Data Streams
    Tan JunShan
    Kuang Zhufang
    Yang Guogui
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768
  • [30] Efficient algorithm for mining approximate frequent item over data streams
    Wang, Wei-Ping
    Li, Jian-Zhong
    Zhang, Dong-Dong
    Guo, Long-Jiang
    Ruan Jian Xue Bao/Journal of Software, 2007, 18 (04): : 884 - 892