Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells

被引:0
|
作者
Jeong-Hyeok Im
In-Hyuk Jang
Norman Pellet
Michael Grätzel
Nam-Gyu Park
机构
[1] Sungkyunkwan University,School of Chemical Engineering and Department of Energy Science
[2] Laboratory for Photonics and Interfaces,undefined
[3] Institute of Chemical Sciences and Engineering,undefined
[4] School of Basic Sciences,undefined
[5] Ecole Polytechnique Fédérale de Lausanne,undefined
[6] Max-Planck-Institute for Solid-State Research,undefined
来源
Nature Nanotechnology | 2014年 / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Perovskite solar cells with submicrometre-thick CH3NH3PbI3 or CH3NH3PbI3–xClx active layers show a power conversion efficiency as high as 15%. However, compared to the best-performing device, the average efficiency was as low as 12%, with a large standard deviation (s.d.). Here, we report perovskite solar cells with an average efficiency exceeding 16% and best efficiency of 17%. This was enabled by the growth of CH3NH3PbI3 cuboids with a controlled size via a two-step spin-coating procedure. Spin-coating of a solution of CH3NH3I with different concentrations follows the spin-coating of PbI2, and the cuboid size of CH3NH3PbI3 is found to strongly depend on the concentration of CH3NH3I. Light-harvesting efficiency and charge-carrier extraction are significantly affected by the cuboid size. Under simulated one-sun illumination, average efficiencies of 16.4% (s.d. ± 0.35), 16.3% (s.d. ± 0.44) and 13.5% (s.d. ± 0.34) are obtained from solutions of CH3NH3I with concentrations of 0.038 M, 0.050 M and 0.063 M, respectively. By controlling the size of the cuboids of CH3NH3PbI3 during their growth, we achieved the best efficiency of 17.01% with a photocurrent density of 21.64 mA cm–2, open-circuit photovoltage of 1.056 V and fill factor of 0.741.
引用
收藏
页码:927 / 932
页数:5
相关论文
共 50 条
  • [21] Shape-controlled CH3NH3PbI3 nanoparticles for planar heterojunction perovskite solar cells
    Shahiduzzaman, Md
    Yamamoto, Kohei
    Furumoto, Yoshikazu
    Kuwabara, Takayuki
    Takahashi, Kohshin
    Taima, Tetsuya
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (02)
  • [22] A Feasible and Effective Post-Treatment Method for High-Quality CH3NH3PbI3 Films and High-Efficiency Perovskite Solar Cells
    Jiang, Yaxiao
    Tu, Limin
    Li, Haitao
    Li, Shaohua
    Yang, Shi-E
    Chen, Yongsheng
    CRYSTALS, 2018, 8 (01)
  • [23] Photoinduced ion-redistribution in CH3NH3PbI3 perovskite solar cells
    Yanagida, Masatoshi
    Shirai, Yasuhiro
    Khadka, Dhruba B.
    Miyano, Kenjiro
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (43) : 25118 - 25125
  • [24] Fabrication and Characterization of CH3NH3PbI3 Perovskite Solar Cells Added with Polysilanes
    Oku, Takeo
    Nomura, Junya
    Suzuki, Atsushi
    Tanaka, Hiroki
    Fukunishi, Sakiko
    Minami, Satoshi
    Tsukada, Shinichiro
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2018, 2018
  • [25] Defect Dynamics in Proton Irradiated CH3NH3PbI3 Perovskite Solar Cells
    Brus, Viktor V.
    Lang, Felix
    Bundesmann, Juergen
    Seidel, Sophie
    Denker, Andrea
    Rech, Bernd
    Landi, Giovanni
    Neitzert, Heinz C.
    Rappich, Joerg
    Nickel, Norbert H.
    ADVANCED ELECTRONIC MATERIALS, 2017, 3 (02):
  • [26] Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells
    Fernandes, Silvia Leticia
    Bregadiolli, Bruna Andressa
    Veron, Anna Christina
    Miesch, Frank A.
    Zaghete, Maria Aparecida
    de Oliveira Graeff, Carlos Frederico
    THIN FILMS FOR SOLAR AND ENERGY TECHNOLOGY VIII, 2016, 9936
  • [27] Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells
    Kang, Rira
    Yeo, Jun-Seok
    Lee, Hyeon Jun
    Lee, Sehyun
    Kang, Minji
    Myoung, NoSoung
    Yim, Sang-Youp
    Oh, Seung-Hwan
    Kim, Dong-Yu
    NANO ENERGY, 2016, 27 : 175 - 184
  • [28] Additive Effects of Guanidinium Iodide on CH3NH3PbI3 Perovskite Solar Cells
    Kishimoto, Taku
    Oku, Takeo
    Suzuki, Atsushi
    Ueoka, Naoki
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (19):
  • [29] Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells
    Abdi-Jalebi, Mojtaba
    Dar, M. Ibrahim
    Sadhanala, Aditya
    Senanayak, Satyaprasad P.
    Gratzel, Michael
    Friend, Richard H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (121):
  • [30] Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method
    Zhao, Ying
    Liu, Jian
    Lu, Xinrong
    Gao, Yandong
    You, Xiaozeng
    Xu, Xiangxing
    APPLIED SURFACE SCIENCE, 2015, 359 : 560 - 566