Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells

被引:2
|
作者
Fernandes, Silvia Leticia [1 ,2 ]
Bregadiolli, Bruna Andressa [2 ]
Veron, Anna Christina [3 ]
Miesch, Frank A. [3 ]
Zaghete, Maria Aparecida [1 ]
de Oliveira Graeff, Carlos Frederico [4 ]
机构
[1] Univ Estadual Paulista, Inst Quim Araraquara, Sao Paulo, SP, Brazil
[2] POSMAT, Programa Posgrad Ciencia & Tecnol Mat, Araraquara, SP, Brazil
[3] Empa, Swiss Fed Inst Mat Sci & Technol, Lab Funct Polymers, Dubendorf, Switzerland
[4] Univ Estadual Paulista, Fac Ciencias Bauru, Dept Fis, Sao Paulo, SP, Brazil
关键词
Perovskite solar cells; sequential deposition; solvent engineering; hysteresis; niobium pentoxide; BEHAVIOR;
D O I
10.1117/12.2236855
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CH3NH3PbI3 perovskite solar cells are one of the most exciting technologies in the renewable energy field, resulting in over 20% power conversion efficiency. Deep understanding of the working principle is now required to turn the high efficiency solar cells into a reliable technology. In this work we have explored the role of deposition method on the crystallinity of perovskite films and its influence on the hysteresis behavior of the current-voltage characteristics. In addition Nb2O5 was used as hole blocking layer and its influence is also discussed. We have found that hysteresis is strongly dependent on both; perovskite deposition method and Nb2O5 thickness. The ideal condition where the hysteresis is suppressed or minimized was achieved by using the sequential deposition method for the perovskite semiconductor and a hole blocking layer of 50 nm.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells
    Haruyama, Jun
    Sodeyama, Keitaro
    Han, Liyuan
    Tateyama, Yoshitaka
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (16): : 2903 - 2909
  • [2] The efficiency limit of CH3NH3PbI3 perovskite solar cells
    Sha, Wei E. I.
    Ren, Xingang
    Chen, Luzhou
    Choy, Wallace C. H.
    APPLIED PHYSICS LETTERS, 2015, 106 (22)
  • [3] Fabrication and characterization of perovskite (CH3NH3PbI3) solar cells
    Mishra, Amrit Kumar
    Shukla, R. K.
    SN APPLIED SCIENCES, 2020, 2 (03):
  • [4] Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells
    Haruyama, Jun
    Sodeyama, Keitaro
    Han, Liyuan
    Tateyama, Yoshitaka
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (03) : 554 - 561
  • [5] Theoretical Treatment of CH3NH3PbI3 Perovskite Solar Cells
    Yun, Sining
    Zhou, Xiao
    Even, Jacky
    Hagfeldt, Anders
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) : 15806 - 15817
  • [6] Fabrication and characterization of perovskite (CH3NH3PbI3) solar cells
    Amrit Kumar Mishra
    R. K. Shukla
    SN Applied Sciences, 2020, 2
  • [7] Origin of Hysteresis in CH3NH3PbI3 Perovskite Thin Films
    Seol, Daehee
    Jeong, Ahreum
    Han, Man Hyung
    Seo, Seongrok
    Yoo, Tae Sup
    Choi, Woo Seok
    Jung, Hyun Suk
    Shin, Hyunjung
    Kim, Yunseok
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (37)
  • [8] The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells
    Huang, Pao-Hsun
    Wang, Yeong-Her
    Ke, Jhong-Ciao
    Huang, Chien-Jung
    ENERGIES, 2017, 10 (05):
  • [9] Cooperative kinetics of depolarization in CH3NH3PbI3 perovskite solar cells
    Bertoluzzi, Luca
    Sanchez, Rafael S.
    Liu, Linfeng
    Lee, Jin-Wook
    Mas-Marza, Elena
    Han, Hongwei
    Park, Nam-Gyu
    Mora-Sero, Ivan
    Bisquert, Juan
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) : 910 - 915
  • [10] A modified two-step sequential deposition method for preparing perovskite CH3NH3PbI3 solar cells
    Shao, Feng
    Xu, Li
    Tian, Zhangliu
    Xie, Yian
    Wang, Yaoming
    Sheng, Peng
    Wang, Deliang
    Huang, Fuqiang
    RSC ADVANCES, 2016, 6 (48) : 42377 - 42381