Flocking and Turning: a New Model for Self-organized Collective Motion

被引:0
|
作者
Andrea Cavagna
Lorenzo Del Castello
Irene Giardina
Tomas Grigera
Asja Jelic
Stefania Melillo
Thierry Mora
Leonardo Parisi
Edmondo Silvestri
Massimiliano Viale
Aleksandra M. Walczak
机构
[1] Istituto Sistemi Complessi (ISC-CNR),Dipartimento di Fisica
[2] “Sapienza” Universitá di Roma,Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) and Departamento de Física, Facultad de Ciencias Exactas
[3] Initiative for the Theoretical Sciences,Laboratoire de Physique Statistique de l’École Normale Supérieure
[4] The Graduate Center,Dipartimento di Informatica
[5] Universidad Nacional de La Plata,Dipartimento di Matematica e Fisica
[6] CONICET La Plata,Laboratoire de Physique Théorique de l’École Normale Supérieure
[7] Consejo Nacional de Investigaciones Científicas y Técnicas,undefined
[8] CNRS and Universites Paris VI and Paris VII,undefined
[9] “Sapienza” Universitá di Roma,undefined
[10] Universitá Roma Tre,undefined
[11] CNRS and University Paris VI,undefined
来源
关键词
Collective behavior; Flocking; Self-organization; Emergent behavior; Animal groups;
D O I
暂无
中图分类号
学科分类号
摘要
Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.
引用
收藏
页码:601 / 627
页数:26
相关论文
共 50 条
  • [31] Self-organized model of cascade spreading
    S. Gualdi
    M. Medo
    Y.-C. Zhang
    The European Physical Journal B, 2011, 79 : 91 - 98
  • [32] A self-organized model for network evolution
    Caldarelli, G.
    Capocci, A.
    Garlaschelli, D.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (3-4): : 585 - 591
  • [33] STATICS OF A SELF-ORGANIZED PERCOLATION MODEL
    HENLEY, CL
    PHYSICAL REVIEW LETTERS, 1993, 71 (17) : 2741 - 2744
  • [34] Correlated earthquakes in a self-organized model
    Baiesi, M.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2009, 16 (02) : 233 - 240
  • [35] Self-organized criticality in an asexual model?
    Chisholm, C
    Jan, N
    Gibbs, P
    Erzan, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (06): : 1257 - 1262
  • [36] Self-organized criticality - A model for recrystallization?
    Wroblewski, T.
    International Journal of Materials Research, 2002, 93 (12) : 1228 - 1232
  • [37] Self-organized model of cascade spreading
    Gualdi, S.
    Medo, M.
    Zhang, Y. -C.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 79 (01): : 91 - 98
  • [38] Self-organized criticality - a model for recrystallization ?
    Wroblewski, T
    ZEITSCHRIFT FUR METALLKUNDE, 2002, 93 (12): : 1228 - 1232
  • [39] Hypothesis of quantum as a distributed self-organized computation by collective of particles
    Kurakin, Pavel V.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006
  • [40] Negotiation mechanism for self-organized scheduling system with collective intelligence
    Madureira, A.
    Pereira, I.
    Pereira, R.
    Abraham, A.
    NEUROCOMPUTING, 2014, 132 : 97 - 110