GBS Operators of Lupaş–Durrmeyer Type Based on Polya Distribution

被引:0
|
作者
P. N. Agrawal
Nurhayat Ispir
Arun Kajla
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
[2] Gazi University,Department of Mathematics, Sciences and Arts Faculty
来源
Results in Mathematics | 2016年 / 69卷
关键词
Lupaş–Durrmeyer operators; -continuous function; -differentiable function; GBS operators; Polya distribution; mixed modulus of smoothness; 41A10; 41A25; 41A36; 41A63;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study an extension of the bivariate Lupaş–Durrmeyer operators based on Polya distribution. For these operators we get a Voronovskaja type theorem and the order of approximation using Peetre’s K-functional. Then, we construct the Generalized Boolean Sum operators of Lupaş–Durrmeyer type and estimate the degree of approximation in terms of the mixed modulus of smoothness.
引用
收藏
页码:397 / 418
页数:21
相关论文
共 50 条
  • [41] THE BEZIER VARIANT OF LUPAS KANTOROVICH OPERATORS BASED ON POLYA DISTRIBUTION
    Lian, Bo-Yong
    Cai, Qing-Bo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1107 - 1116
  • [42] Modified Stancu operators based on inverse Polya Eggenberger distribution
    Sheetal Deshwal
    PN Agrawal
    Serkan Araci
    Journal of Inequalities and Applications, 2017
  • [43] Modified Stancu operators based on inverse Polya Eggenberger distribution
    Deshwal, Sheetal
    Agrawal, P. N.
    Araci, Serkan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [44] Rate of convergence of Lupas Kantorovich operators based on Polya distribution
    Ispira, Nurhayat
    Agrawal, Purshottam Narain
    Kajla, Arun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 323 - 329
  • [45] q- Lupas Kantorovich operators based on Polya distribution
    Agrawal P.N.
    Gupta P.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2018, 64 (1) : 1 - 23
  • [46] Approximation properties of Lupas–Kantorovich operators based on Polya distribution
    Agrawal P.N.
    Ispir N.
    Kajla A.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (2): : 185 - 208
  • [47] Generalized Durrmeyer operators based on inverse Pólya–Eggenberger distribution
    Minakshi Dhamija
    Naokant Deo
    Ram Pratap
    Ana Maria Acu
    Afrika Matematika, 2022, 33
  • [48] On approximation properties of generalized Lupas type operators based on Polya distribution with Pochhammer k-symbol
    Gurel Yilmaz, Ovgu
    Aktas, Rabia
    Tasdelen, Fatma
    Olgun, Ali
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (02): : 338 - 361
  • [49] q-Szasz-Durrmeyer Type Operators Based on Dunkl Analogue
    Rao, Nadeem
    Wafi, Abdul
    Acu, Ana Maria
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 915 - 934
  • [50] Durrmeyer-Type Generalization of μ-Bernstein Operators
    Kajla, Arun
    Mohiuddine, S. A.
    Alotaibi, Abdullah
    FILOMAT, 2022, 36 (01) : 349 - 360