q- Lupas Kantorovich operators based on Polya distribution

被引:0
|
作者
Agrawal P.N. [1 ]
Gupta P. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee
关键词
A-statistical convergence; Degree of approximation; Modulus of continuity; Peetre‘s K-functional;
D O I
10.1007/s11565-017-0291-1
中图分类号
学科分类号
摘要
The purpose of the present paper is to introduce a Kantorovich modification of the q-analogue of the Stancu operators defined by Nowak (J Math Anal Appl 350:50–55, 2009). We study a local and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Further A-statistical convergence properties of these operators are investigated. Next, a bivariate generalization of these operators is introduced and its rate of convergence is discussed with the aid of the partial and complete modulus of continuity and the Peetre‘s K-functional. © 2017, Università degli Studi di Ferrara.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 50 条
  • [1] MODIFIED LUPAS,-KANTOROVICH OPERATORS WITH POLYA DISTRIBUTION
    Agrawal, Gunjan
    Gupta, Vijay
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (06) : 1909 - 1919
  • [2] THE BEZIER VARIANT OF LUPAS KANTOROVICH OPERATORS BASED ON POLYA DISTRIBUTION
    Lian, Bo-Yong
    Cai, Qing-Bo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1107 - 1116
  • [3] Approximation properties of Lupas–Kantorovich operators based on Polya distribution
    Agrawal P.N.
    Ispir N.
    Kajla A.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (2): : 185 - 208
  • [4] Rate of convergence of Lupas Kantorovich operators based on Polya distribution
    Ispira, Nurhayat
    Agrawal, Purshottam Narain
    Kajla, Arun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 323 - 329
  • [5] A Kantorovich variant of Lupas-Stancu operators based on Polya distribution with error estimation
    Rahman, Shagufta
    Mursaleen, Mohammad
    Khan, Asif
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [6] Some Smoothness Properties of the Lupas-Kantorovich Type Operators Based on Polya Distribution
    Kajla, Arun
    Miclaus, Dan
    FILOMAT, 2018, 32 (11) : 3867 - 3880
  • [7] LUPAS-DURRMEYER OPERATORS BASED ON POLYA DISTRIBUTION
    Gupta, Vijay
    Rassias, Themistocles M.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02): : 146 - 155
  • [8] QUANTITATIVE VORONOVSKAYA TYPE THEOREMS AND GBS OPERATORS OF KANTOROVICH VARIANT OF LUPAS-STANCU OPERATORS BASED ON POLYA DISTRIBUTION
    Bawa, Parveen
    Bhardwaj, Neha
    Agrawal, P. N.
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (04): : 269 - 293
  • [9] q-型Lupas-Kantorovich算子的逼近性质
    王涛
    李艳
    浙江大学学报(理学版), 2023, 50 (05) : 533 - 538
  • [10] Approximation by (p, q)-Lupas-Schurer-Kantorovich operators
    Kanat, Kadir
    Sofyalioglu, Melek
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,