q- Lupas Kantorovich operators based on Polya distribution

被引:0
|
作者
Agrawal P.N. [1 ]
Gupta P. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee
关键词
A-statistical convergence; Degree of approximation; Modulus of continuity; Peetre‘s K-functional;
D O I
10.1007/s11565-017-0291-1
中图分类号
学科分类号
摘要
The purpose of the present paper is to introduce a Kantorovich modification of the q-analogue of the Stancu operators defined by Nowak (J Math Anal Appl 350:50–55, 2009). We study a local and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Further A-statistical convergence properties of these operators are investigated. Next, a bivariate generalization of these operators is introduced and its rate of convergence is discussed with the aid of the partial and complete modulus of continuity and the Peetre‘s K-functional. © 2017, Università degli Studi di Ferrara.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 50 条
  • [21] Convergence properties of generalized Lupas-Kantorovich operators
    Qasim, M.
    Khan, A.
    Abbas, Z.
    Mursaleen, M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (03) : 818 - 830
  • [22] Blending type approximation by Stancu-Kantorovich operators based on Polya-Eggenberger distribution
    Kajla, Arun
    Araci, Serkan
    OPEN PHYSICS, 2017, 15 (01): : 335 - 343
  • [23] On statistical approximation properties of the Kantorovich type Lupas operators
    Dogru, Ogun
    Kanat, Kadir
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 1610 - 1621
  • [24] APPROXIMATION BY COMPLEX LUPAS-DURRMEYER POLYNOMIALS BASED ON POLYA DISTRIBUTION
    Gal, S. G.
    Gupta, V.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (01): : 209 - 221
  • [25] Approximation properties and q-statistical convergence of Kantorovich variant of Stancu type Lupas operators
    Malik, Gufran
    Khan, Taqseer
    Mursaleen, M.
    FILOMAT, 2023, 37 (29) : 10107 - 10124
  • [26] Lupas , Bernstein-Kantorovich Operators Using Jackson and Riemann Type (p, q)-Integrals
    Iliyas, Mohammad
    Bhatt, Rameez A.
    Khan, Asif
    Mursaleen, M.
    FILOMAT, 2022, 36 (15) : 5221 - 5240
  • [27] Higher order Lupas-Kantorovich operators and finite differences
    Gupta, Vijay
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [28] Lupas-Kantorovich Type Operators for Functions of Two Variables
    Agrawal, P. N.
    Kumar, Abhishek
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 17 - 36
  • [29] Blending-type approximation by Lupas-Durrmeyer-type operators involving Polya distribution
    Kajla, Arun
    Mohiuddine, S. A.
    Alotaibi, Abdullah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 9407 - 9418
  • [30] λ-Bernstein Operators Based on Polya Distribution
    Lipi, Km
    Deo, Naokant
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (06) : 529 - 544