Schubert Varieties and Free Braidedness

被引:0
|
作者
R.M. Green
J. Losonczy
机构
[1] Department of Mathematics,
[2] University of Colorado,undefined
[3] Campus Box 395,undefined
[4] Boulder,undefined
[5] CO 80309-0395,undefined
[6] Department of Mathematics,undefined
[7] Long Island University,undefined
[8] 720 Northern Boulevard,undefined
[9] Brookville,undefined
[10] NY 11548-1319,undefined
来源
Transformation Groups | 2004年 / 9卷
关键词
Topological Group; Weyl Group; Schubert Variety; Smooth Schubert Variety; Braided Element;
D O I
暂无
中图分类号
学科分类号
摘要
We give a simple necessary and sufficient condition for a Schubert variety Xw to be smooth when w is a freely braided element of a simply laced Weyl group; such elements were introduced by the authors in a previous work. This generalizes in one direction a result of Fan concerning varieties indexed by short-braid avoiding elements. We also derive generating functions for the freely braided elements that index smooth Schubert varieties. All results are stated and proved only for the simply laced case.
引用
收藏
页码:327 / 336
页数:9
相关论文
共 50 条
  • [31] Toric degenerations of Schubert varieties
    Caldero, P
    TRANSFORMATION GROUPS, 2002, 7 (01) : 51 - 60
  • [32] MULTICONES OVER SCHUBERT VARIETIES
    KEMPF, GR
    RAMANATHAN, A
    INVENTIONES MATHEMATICAE, 1987, 87 (02) : 353 - 363
  • [33] TANGENT SPACES TO SCHUBERT VARIETIES
    Lakshmibai, V.
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (04) : 473 - 477
  • [34] Governing singularities of Schubert varieties
    Woo, Alexander
    Yong, Alexander
    JOURNAL OF ALGEBRA, 2008, 320 (02) : 495 - 520
  • [35] CURVE NEIGHBORHOODS OF SCHUBERT VARIETIES
    Buch, Anders S.
    Mihalcea, Leonardo C.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 99 (02) : 255 - 283
  • [36] DEGENERATE SCHUBERT VARIETIES IN TYPE A
    Chirivi, Rocco
    Fang, Xin
    Fourier, Ghislain
    TRANSFORMATION GROUPS, 2021, 26 (04) : 1189 - 1215
  • [37] ON THE BIRATIONAL GEOMETRY OF SCHUBERT VARIETIES
    Schmidt, Benjamin
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (03): : 489 - 502
  • [38] COMBINATORICS AND INTERSECTIONS OF SCHUBERT VARIETIES
    HILLER, H
    COMMENTARII MATHEMATICI HELVETICI, 1982, 57 (01) : 41 - 59
  • [39] MODULES ASSOCIATED WITH SCHUBERT VARIETIES
    POLO, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (05): : 123 - 126
  • [40] Elliptic classes of Schubert varieties
    Kumar, Shrawan
    Rimanyi, Richard
    Weber, Andrzej
    MATHEMATISCHE ANNALEN, 2020, 378 (1-2) : 703 - 728